北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (s1): 77-82.doi: 10.13190/j.jbupt.2014.s1.015

• 论文 • 上一篇    下一篇

动态疫苗接种的入侵检测方法

张玲1,2, 白中英1, 谢康3   

  1. 1. 北京邮电大学 计算机学院, 北京 100876;
    2. 郑州轻工业学院, 郑州 450000;
    3. 山东大学, 济南 250100
  • 收稿日期:2013-10-26 出版日期:2014-06-28 发布日期:2014-06-28
  • 作者简介:张 玲(1979- ),女,博士生,E-mail:fighter060409@sina.cn;白中英(1941- ),男,教授.
  • 基金资助:

    国家自然科学基金项目(61121061,61161140320)

Dynamic Intrusion Detections with Vaccination

ZHANG Ling1,2, BAI Zhong-ying1, XIE Kang3   

  1. 1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Zhengzhou University of Light Industry, Zhengzhou 450000, China;
    3. Shandong University, Jinan 250100, China
  • Received:2013-10-26 Online:2014-06-28 Published:2014-06-28
  • Supported by:
     

摘要:

提出了一种基于动态疫苗接种的入侵检测方法.设计了一种基于粗糙集方法的抗体生成方案和一种基于属性重要度的疫苗接种策略.采用粗糙集方法是为了保证抗体的优良性,同时提高检测的速度;使用疫苗接种策略能获得适应度高的疫苗,同时使得检测算法具有较高的收敛速度.最后通过模拟实验,验证了模型的可行性及有效性.

关键词: 入侵检测, 粗糙集, 人工免疫, 疫苗

Abstract:

A method of dynamic intrusion detection using vaccination (DIDV) is designed. With rough set (RS), a scheme is given to generate antibodies, and a strategy based on the significance of the attributes is proposed to get vaccinations. The RS is used to promise excellent antibodies and to increase the detection rate. Vaccination strategy is applied to gain more compatible vaccinations and to get higher convergence rate. Experiments show that the proposed method is of feasibility and effectiveness.

Key words: intrusion detection, rough set, artificial immune, vaccination

中图分类号: