北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (s1): 60-65.doi: 10.13190/j.jbupt.2014.s1.012

• 论文 • 上一篇    下一篇

基于二维云模型过滤的重复图像发现

陈明1,2, 王树鹏3, 云晓春1,4, 吴广君3   

  1. 1. 北京邮电大学 灾备技术国家工程实验室, 北京 100876;
    2. 郑州轻工业学院, 郑州 450000;
    3. 中国科学院 信息工程研究所, 北京 100093;
    4. 国家计算机网络应急技术处理协调中心, 北京 100029
  • 收稿日期:2013-11-15 出版日期:2014-06-28 发布日期:2014-06-28
  • 作者简介:陈 明(1983- ),男,博士生,E-mail:cm19834@163.com;云晓春(1971- ),男,教授,博士生导师.
  • 基金资助:

    国家自然科学基金项目(61202067,61271275,61003260);国家高技术研究发展计划项目(2013AA01A213,2013AA013204,2013AA013205,2012AA012803)

Duplicate Image Detection Based on Two-Dimensional Cloud Model Filter

CHEN Ming1,2, WANG Shu-peng3, YUN Xiao-chun1,4, WU Guang-jun3   

  1. 1. National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Zhengzhou University of Light Industry, Zhengzhou 450000, China;
    3. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China;
    4. National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China
  • Received:2013-11-15 Online:2014-06-28 Published:2014-06-28
  • Supported by:
     

摘要:

针对传统的重复图像发现技术无法保证图像检索的扩展性和精确性,提出了一种基于二维云模型过滤的重复图像发现方法.该方法在词袋模型的基础上,首先将汉明嵌入精炼后的匹配描述子映射为二维空间中的点,然后通过云模型计算二维点分布的不确定性以剔除分布波动较大的候选图像,最后根据投票得分进行图像排名.实验结果表明,新提出的方法不仅能保持弱几何一致性约束算法适合大规模图像检索的优点,而且还显著提高了重复图像发现的精度.

关键词: 汉明嵌入, 弱几何一致性约束, 词袋模型, 不确定性, 云模型

Abstract:

Because traditional duplicate image detection technologies can not ensure the scalability and the precision of image retrieval, this article proposes a duplicate image detection approach based on two-dimensional cloud model filter. On basis of bag-of-word model, the approach first maps the matching descriptors which are refined by Hamming embedding to points in the two-dimensional space, and then uses cloud model to compute the uncertainty of two-dimensional points' distribution for excluding the candidate images with larger fluctuation. Finally, the images are ranked according to voting score. Experiments show that the new approach not only maintains the merit of weak geometric consistency constraint algorithm which is suitable for large-scale image retrieval, but also significantly improves the accuracy of duplicate image detection.

Key words: Hamming embedding, weak geometric consistency constraint, bag-of-word, uncertainty, cloud model

中图分类号: