北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2013, Vol. 36 ›› Issue (6): 23-26.doi: 10.13190/j.jbupt.2013.06.005

• 论文 • 上一篇    下一篇

高效的基于双难问题的多重签密方案

李战虎1,2, 樊凯1, 李晖1   

  1. 1. 西安电子科技大学 综合业务网重点实验室, 西安 710071;
    2. 咸阳师范学院 数学与信息科学学院, 陕西 咸阳 712000
  • 收稿日期:2013-03-21 出版日期:2013-12-31 发布日期:2013-10-08
  • 作者简介:李战虎(1978—),男,博士生,E-mail:lizhanhu75@126.com;李摇晖(1968—),男,教授,博士生导师.
  • 基金资助:

    国家科技重大专项项目(2012ZX03002003);中央高校基本科研业务费专项资金项目(K5051201003);国家自然科学基金项目(61303216);中国博士后科学基金资助项目(2013M542328);陕西省教育厅专项科研基金项目(09Jk803);咸阳师范学院专项科研基金项目(11XSYK305)

Efficient Multiple Signcryption Scheme Based on Two Hard Problems

LI Zhan-hu1,2, FAN Kai1, LI Hui1   

  1. 1. State Key Laboratory of Integrated Service Networks, Xidian University, Xi'an 710071, China;
    2. Mathematics and Information Science College, Xianyang Normal University, Shanxi Xianyang 712000, China
  • Received:2013-03-21 Online:2013-12-31 Published:2013-10-08

摘要:

基于整数环Zn上圆锥曲线的多重签名思想,提出了一种高效的整数环Zn上圆锥曲线的多重签密方案. 在基于大整数分解和圆锥曲线离散对数的双重困难问题下对方案的安全性进行了证明. 该方案中的签密和解签密运算是在圆锥曲线上进行的,因此明文嵌入方便,求逆简单,元素阶的计算及曲线上点的运算均更加容易. 与现有方案的效率进行对比,提出的多重签密方案在信息运算量方面有极大的改进.

关键词: 签密, 多重签密, 圆锥曲线, 大整数分解, 离散对数

Abstract:

A scheme for efficient multiple signcryption on the conic curve over the ring Zn is presented based on multiple digital signature. The security of the proposed scheme is proved based on the two hard problems of large integer factorization and discrete logarithm on conic curve. As the signcryption and de-signcryption are calculated on conic curve, plaintexts can be embedded easily, and in inverse, the element order and points' operation on conic curve over can be calculated more simply and easily in the proposed scheme. Compared with the exiting scheme in efficiency, the proposed scheme is greatly improved in information computation.

Key words: signcryption, multiple signcryption, conic curve, large integer factorization, discrete logarithm

中图分类号: