北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2013, Vol. 36 ›› Issue (3): 39-43.doi: 10.13190/jbupt.201303.41.lutl

• 论文 • 上一篇    下一篇

基于动态克隆选择算法的病毒检测模型

芦天亮1,2, 郑康锋1, 刘颖卿1, 胡影3, 武斌1   

  1. 1. 北京邮电大学 信息安全中心, 北京 100876;
    2. 中国人民公安大学 网络安全保卫学院, 北京 100038;
    3. 武警北京指挥学院, 北京 100012
  • 收稿日期:2012-09-18 出版日期:2013-06-30 发布日期:2013-06-30
  • 作者简介:芦天亮(1985—), 男, 博士生, E-mail: ltl135@126.com; 郑康锋(1975—), 男, 教授.
  • 基金资助:

    国家自然科学基金项目(61070204, 61101108); 国家科技重大专项课题(2011ZX03002-005-01)

Virus Detection Model Based on Dynamic Clonal Selection Algorithm

LU Tian-liang1,2, ZHENG Kang-feng1, LIU Ying-qing1, HU Ying3, WU Bin1   

  1. 1. Information Security Center, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Network Security Defense, People’s Public Security University of China, Beijing 100038, China;
    3. Beijing Command College of Chinese People’s Armed Police Force, Beijing 100012, China
  • Received:2012-09-18 Online:2013-06-30 Published:2013-06-30

摘要:

为了更加有效地检测病毒变种和未知病毒,受生物免疫系统的启发,提出了一种基于人工免疫系统(AIS)的计算机病毒检测模型. 通过引入动态克隆选择算法并对其改进,解决了训练过程中自我空间静态固定的问题,提高了病毒检测系统对于不断变化病毒环境的动态适应能力. 实验结果表明,该模型拥有较强的自适应能力,可有效地检测病毒程序,并且具有较低的误报率.

关键词: 病毒检测, 人工免疫系统, 动态克隆选择算法

Abstract:

In order to detect virus variants and unknown viruses effectively, inspired by the biological immune system, a computer virus detection model based on artificial immune systems (AIS) is proposed. The dynamic clonal selection algorithm is improved to solve the problem that the self-space is static during the training. The proposed model has enhanced the adaptability of virus detection systems to the continuously changing virus environment. Experiment shows that the proposed model has good adaptabilities, it can effectively detect viruses and has a low false positive rate.

Key words: virus detection, artificial immune system, dynamic clonal selection algorithm

中图分类号: