[1] Lam S S, Wong J W. Queuing network models of packet switching networks part 2: networks with population size constraints[J]. Performance Evaluation, 1982, 2(3): 161-180.
[2] Park D, Perros H G. Approximate analysis of discrete-time tandem queuing networks with customer loss //IEEE, Global Telecommun-Ications Conference. NC: North Carolina State University, 1992: 1503-1507.
[3] Park D, Perros H G, Yamashita H. Approximate analysis of discrete-time tandem queuing networks with bursty and correlated input traffic and customer loss [J]. Oper Res Lett, 1994, 15: 95-104.
[4] Cheng Ching Peng, Huei Wen Fering. A systematic performance evaluation method for a discrete-time tandem network//International Conference on Machine Learning and Cybernetics. Kunming: , 2008: 3118-3124.
[5] Neuts M F. Matrix-geometric solutions in stochastic models[M]. Baltimore: The Johns Hopkins University Press, 1981: 132-178.
[6] 伍慧玲, 尹小玲, 方春锋, 等. 有负顾客的M/G/1有限源重试排队系统[J]. 运筹与管理, 2006, 15(3): 59-65. Wu Huiling, Yin Xiaoling, Fang Chunfeng, et al. M/G/1 retrial queueing network with negative customer [J]. Strategy and Management, 2006, 15(3): 59-65.
[7] Alfa A. Discrete-time analysis of the GI/G/1 system with Bernoulli retrials: an algorithmic approach [J]. Annal of Operations Research, 2006, 141: 51-66.
[8] Fischer W, Meier-Hellstern K S. The markov -modulated poisson process (MMPP) cookbook [J]. Performance Evaluation, 1992, 18: 149-171.
[9] Ferng Huei-Wen, Chang J F. Departure processes of BMAP/G/1 queues [J]. Queuing Systems, 2001, 39: 109–135.
[10] 田乃硕, 徐秀英, 马占友. 离散时间排队论[M]. 北京: 科学出版社, 2008: 231-307. |