北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2011, Vol. 34 ›› Issue (1): 35-39.doi: 10.13190/jbupt.201101.35.zhoux

• 论文 • 上一篇    下一篇

核Fisher判别分析在数字信号分类中的应用

周欣,吴瑛   

  1. 信息工程大学 信息工程学院, 郑州 450002
  • 收稿日期:2010-03-03 修回日期:2010-07-02 出版日期:2011-02-28 发布日期:2011-02-28
  • 通讯作者: 周欣 E-mail:zx007_0_0@126.com
  • 基金资助:

    国家自然科学基金项目(60872043)

Application of Kernel Fisher Discriminant Analysis to  Digital Signal Classification

  • Received:2010-03-03 Revised:2010-07-02 Online:2011-02-28 Published:2011-02-28

摘要:

为了提高通信信号的识别精度,提出了一种基于核Fisher判别分析(KFDA)的数字调制信号分类器设计方法. 将接收信号的高阶累积量作为分类特征向量,利用核函数的思想把非线性向量映射到一个高维空间,并在高维空间中利用线性Fisher判别分析实现数字信号的分类. 将多类分类器分解成一系列二类问题,并给出了KFDA用于信号分类的详细流程. 仿真实验结果表明,当选择合适的核参数时,基于KFDA的分类精度与支持向量机相当,但由于避免了求解非线性优化问题,故计算复杂度低,训练时间短.

关键词: 高阶累积量, 核Fisher判别分析, 核函数, 信号分类

Abstract:

In order to improve signal classification accuracy, a new classification method based on kernel Fisher discriminant analysis (KFDA) is given in the digital modulation signal classification. The higher order cumulants of the received signals are used as the classification vectors firstly, then the kernel thought is used to map the feature vector to the high dimensional feature space nonlinearly and linear Fisher discriminant analysis is applied to signal classification. The multiclass classifier is decomposed to multiple twokinds classifiers, and the classification steps of signal recognition based on kernel Fisher discriminant analysis are described in detail. It is concluded based on experiment that when proper parameters are selected, it will almost get the same classification accuracy as the support vector machine classifier. Meanwhile, support vector machine requires less time and computational complexity is lower because KFDA avoids solving the nonlinear optimization problem.

Key words: highorder cumulant, kernel Fisher discriminant analysis, kernel function, signal classification