北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2004, Vol. 27 ›› Issue (2): 24-28.

• 论文 • 上一篇    下一篇

一种改进的基于拉格朗日插值的( t ,n )门限秘密共享

戴元军, 马春光, 杨义先   

  1. 北京邮电大学 信息工程学院, 北京 100876
  • 收稿日期:2003-02-11 出版日期:2004-02-28
  • 作者简介: 戴元军(1974—),男,博士生。 E-mail:daiyuanjun@126.com
  • 基金资助:
    国家自然科学基金资助项目(90204017,60372094); 国家“973计划”资助项目(G1999035804)

An Kind of (t, n)Threshold Secret Sharing
Based on Lagrange Insert Value

DAI Yuan-Jun, MA Chun-Guang, YANG Yi-Xian   

  1. Information Engineering School, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2003-02-11 Online:2004-02-28

摘要: 利用椭圆曲线离散对数问题的难解性,给出了一个基于拉格朗日插值的(t,n)门限秘密共享方案。本方案可使每个参与者对自己的子秘密及其他成员出示的子秘密进行验证,而不泄露子秘密信息,有效地阻止了外部攻击者对子秘密的窃取及内部参与者之间的互相欺诈。文中还给出了一个本方案的小数据实例,最后是本方案的安全性分析。

关键词: 秘密共享, 门限方案, 椭圆曲线离散对数问题

Abstract: By means of the intractability of Ellipse Curve Discrete Logarithm Problem (ECDLP), a (t, n) secret sharing threshold scheme based on Lagrange insert value is presented. Every participant is able to verify the share that hereceives and those other participants show, but the secret share isn't given away. This scheme can prevent adversaries from getting the shares and the participants cheating each other efficiently. The problem of renew shared secret, dynamic sub-secret allocation are properly treated in this scheme. An example of the scheme using the small number is given. The security of the scheme is analyzed in thefinal.

Key words: secret sharing, threshold scheme, ellipse curve discrete logarithm problem

中图分类号: