北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 1999, Vol. 22 ›› Issue (4): 79-83.

• 研究报告 • 上一篇    下一篇

一维复数金兹堡-朗道方程的时空行为

王世红, 肖井华   

  1. 北京邮电大学基础科学部, 北京 100876
  • 收稿日期:1999-06-21 出版日期:1999-11-10

Spatiotemporal Behavior of One-Dimensional ComplexGinzburg-Landau Equation

Wang Shihong, Xiao Jinghua   

  1. Department of Basic Science, Beijing University of Posts and Telecommunications, Beijing 100876
  • Received:1999-06-21 Online:1999-11-10

摘要: 复杂的时空系统在小的系统尺寸下的时空行为有别于大的系统.讨论了一维复数金兹堡-朗道方程在小的系统尺寸下的时空行为.随着系统尺寸的增加, CGLE经历了振动解、 驻波态、 准周期态、 阵发混沌态的变化, 通过线性稳定性分析给出了第一次霍普夫分岔的系统尺寸, 并对准周期态进行了分析, 发现这是2频率的准周期态.

关键词: 复数金兹堡-朗道方程, 霍普夫分岔, 准周期

Abstract: Spatiotemporal behavior of complicated systems in small system size are different from that in big system size. Spatiotemporal behavior in one-dimensional complex Ginzburg-Landau equation is investigation whenthe system size is small. When the system size is increasing, CGLE undergoes vibration solution, standing waves, quasi-periodic states, intermittency. The system size at transition point which the first Hopf bifurcation takes place is analyzed by linear stability analysis. Quasi-periodic states are studied, confirmed to be double frequency spatiotemporal quasi-periodic states.

Key words: complex Ginzbury-Landau equation, Hopf bifurcation, quasi-period

中图分类号: