北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2013, Vol. 36 ›› Issue (3): 92-96.doi: 10.13190/jbupt.201303.96.zhanghg

• 研究报告 • 上一篇    下一篇

应用种群多样性二进制蛙跳算法实现机会频谱分配

张洪光, 刘元安   

  1. 北京邮电大学 电子工程学院, 北京 100876
  • 收稿日期:2012-07-06 出版日期:2013-06-30 发布日期:2013-06-30
  • 作者简介:张洪光(1978—), 男, 博士生, E-mail: hongguang-zhang@bupt.edu.cn; 刘元安(1964—), 男, 教授, 博士生导师.
  • 基金资助:

    国家自然科学基金项目(61272518, 61272516, 61170275); 新一代宽带无线移动通信网科技重大专项项目(2011ZX03001-004-02,2011ZX03001-005-02)

Binary Shuffled Frog Leaping Algorithm in Population Diversity for Opportunistic Spectrum Assignment

ZHANG Hong-guang, LIU Yuan-an   

  1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2012-07-06 Online:2013-06-30 Published:2013-06-30

摘要:

针对NP-Hard认知无线电分配模型,提出了基于种群多样性的二进制蛙跳算法. 传统蛙跳算法采用整数编码和相关的搜索方法,新算法采用种群文化倾向性,在二进制编码条件下实现了最优或次优解搜索. 依据模式理论,以海明距为数学工具,定义了种群多样性参量作为早熟判别指标,当出现早熟时,在保留精英个体前提下进行种群重构,避免算法陷入局部最优. 为了证明算法的有效性,进行了100种网络拓扑结构的对比实验,实验数据说明,新算法优于粒子群、遗传算法和量子遗传算法,针对3种适应度函数,其优胜率分别为100%、75%和100%.

关键词: 二进制蛙跳算法, 认知无线电, 种群多样性, 文化倾向性

Abstract:

Binary shuffled frog leaping algorithm (BSFLA) in population diversity is proposed for a cognitive radio allocation model, which is a NP-hard problem. The integer coding manner and the searching method is applied in the shuffled frog leaping algorithm. BSFLA utilizes binary coding manner, explores application of the cultural orientation method to accomplish the searching for the optimal solution. Based on schemata theory, the population diversity is defined using hamming distance in order to judge the premature phenomenon. When the premature phenomenon appears, the population reconstruction is done under the elitist retention conditions to avoid falling into the local optimal point. To demonstrate the effectiveness of the proposed algorithm, An experiment for contrast on 100 various network topologies is done. For three fitness functions, the success rates that the proposed algorithm is superior to particle swarm optimization, genetic algorithm and quantum genetic algorithm are equal to 100%, 75% and 100% respectively.

Key words: binary shuffled frog leaping algorithm, cognitive radio, population diversity, cultural orientation

中图分类号: