北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2008, Vol. 31 ›› Issue (4): 73-76.doi: 10.13190/jbupt.200804.73.031

• 论文 • 上一篇    下一篇

改进的人脸检测训练方法

樊 宁,苏 菲   

  1. 北京邮电大学 电信工程学院,北京 100876)
  • 收稿日期:2007-08-27 修回日期:1900-01-01 出版日期:2008-08-30 发布日期:2008-08-30
  • 通讯作者: 樊 宁

An Improved Face Detection Training Method

FAN Ning, SU Fei   

  1. School of Telecommunications Engineering, Beijing University of Posts and Telecommunications,Beijing 100876,Chian
  • Received:2007-08-27 Revised:1900-01-01 Online:2008-08-30 Published:2008-08-30
  • Contact: FAN Ning

摘要:

针对AdaBoost存在的诸如分类器的级联结构会导致系统拒真率与认假率的失衡,单调性前提的不成立容易直接造成训练过程的失败等缺陷,对人脸检测训练方法进行研究,提出了一种改进算法——neighbor-eliminated boosting(NEB)算法。此算法通过构建一种新的基于双表链接结构的特征描述子存储结构,引入特征相关信息,简化了训练过程。实验结果表明,以NEB算法为基础实现的人脸检测系统,在训练速度上具有明显的优越性。

关键词: 人脸检测, 自适应提升算法, neighbor-eliminated boosting算法, 双表链接结构, Neyman-Pearson决策规则

Abstract:

Applied to face detection, although AdaBoost is one of effective algorithms, it has some limitations. A neighbor-eliminated boosting(NEB) algorithm is proposed to remedy these deficiencies, which is like that the cascaded stage classifiers may unbalance on false reject rate and false accept rate, and that the invalidation of monotonicity assumption may conduce to abortive feature learning. NEB constructs a group of new feature describers linked by two lists, which will lead to correlation of features to simplify training. Experiments demonstrate that NEB algorithm accelerates the training speed and obtain the better performance.

Key words: face detection, AdaBoost, neighbor-eliminated boosting algorithm, a construction linked by two lists, Neyman-Pearson decision rule

中图分类号: