北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2008, Vol. 31 ›› Issue (4): 1-5.doi: 10.13190/jbupt.200804.1.018

• 论文 •    下一篇

高效率的非交互OTkn协议及其应用

秦静1,2, 李丽1 , 李宝2   

  1. 1. 山东大学 数学学院, 济南 250100;2. 信息安全国家重点实验室 中国科学院, 北京 100049
  • 收稿日期:2008-01-27 修回日期:1900-01-01 出版日期:2008-08-30 发布日期:2008-08-30
  • 通讯作者: 秦静

An Efficient Non-Interactive OT Protocol and Its Application

QIN Jing1,2, LI Li1, LI Bao2   

  1. 1. School of Mathematics, Shandong University, Ji’nan 250100,China;
    2. State Key Laboratory of Information Security, Chinese Academy of Sciences, Beijing 100049,China)
  • Received:2008-01-27 Revised:1900-01-01 Online:2008-08-30 Published:2008-08-30
  • Contact: QIN Jing

摘要:

在Cheng-kang Chu和Wen-Guey Tzeng设计的OTkn协议的基础之上提出了一个非交互的OTkn协议.该协议降低了通信复杂度和计算复杂度,接收方的安全性是无条件的,发送方的安全性在判定Diffie-Hellman问题假设下是计算安全的;相比Cheng-kang Chu和Wen-Guey Tzeng的OTkn协议效率更高.同时修正和完善了协议安全性的证明,给出了协议安全性的完整证明;并基于所提出的非交互OTkn协议设计了一个数字产品秘密交易机制,解决了产品价格不一致时的数字产品交易问题.

关键词: 不经意传输协议;非交互OTkn协议, 判定Diffie-Hellman问题;数字产品秘密交易机制

Abstract:

The scheme OTkn developed by Cheng-kang Chu and Wen-Guey Tzeng was thought of more efficiency in the congeneric protocols. A non- interactive k -out-of-n oblivious transfer protocol OTkn is presented, improved with the scheme of Chu and Tzeng. In the proposed protocol, the sender S sends O(n) messages to a receiver R, but R does not send any messages back to S. In other words, R is non-interactive with S. This scheme is proved to be more efficient than that developed by Chu and Tzeng. The receiver’s choices are unconditionally secure. The secrecy of the sender’s unchosen messages is guaranteed if the Decisional Diffie-Hellman problem is hard. The security proof of the proposed protocol has also consummated. An example of oblivious transfer protocols’ application such as a private transaction mechanism of digital productions is presented by employing the proposed scheme. The problems when all productions are different prices have been solved.

Key words: oblivious transfer, non-interactive k-out-of-n oblivious transfer, decisional Diffie-Hellman problem,
private transaction mechanism of digital productions

中图分类号: