北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2007, Vol. 30 ›› Issue (6): 107-110.doi: 10.13190/jbupt.200706.107.zhaosh

• 研究报告 • 上一篇    下一篇

DCT压缩域的图像检索

赵 珊   

  1. (河南理工大学 计算机学院, 焦作 454159)
  • 收稿日期:2007-02-04 修回日期:2007-06-10 出版日期:2007-12-31 发布日期:2007-12-31
  • 通讯作者: 赵珊

Image Retrieval in DCT Compressed Domain

ZHAO Shan   

  1. (School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454159,China)
  • Received:2007-02-04 Revised:2007-06-10 Online:2007-12-31 Published:2007-12-31
  • Contact: ZHAO Shan

摘要:

为解决压缩图像的快速准确检索,提出了一种基于离散余弦变换(DCT)压缩域的图像检索算法。首先给出了复杂度的定义,然后构造DCT复杂度直方图来描述图像的纹理特征。同时,考虑到各个系数在DCT块中不同的分布而体现的信息不同,根据每个DCT块中能量最大的9个系数的空间分布,为复杂度直方图设置权值,从而避免了由于复杂度相同而系数空间分布不同而造成的误检漏检。该算法不仅体现了DCT系数的统计分布,同时也捕捉了它们的空间分布信息。实验结果表明,该算法具有较好的检索效果,尤其对纹理丰富的图像,检索效果更好。

关键词: 基于内容的图像检索, 离散余弦变换, 加权复杂度直方图

Abstract:

Image retrieval based on texture in discrete cosine transform (DCT) compressed domain is proposed by introducing the spatial information of DCT blocks and taking the DCT coefficients into the feature extraction. Firstly, the definition of complex is introduced. Secondly, a complex histogram is presented to extract the texture information. Meanwhile, the effect of the DCT coefficients on the retrieval precision is discussed, the weighting values for histograms are presented. The statistical distribution of DCT blocks and the spatial distribution of DCT coefficients are taken into account as well, thus avoiding the mistaken retrieval and losing retrieval. Experiments show that the new method will show a good performance both in retrieval efficiency and effectiveness.

Key words: content-based image retrieval, discrete cosine transform , weighted complex histogram

中图分类号: