北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2005, Vol. 28 ›› Issue (1): 75-78.doi: 10.13190/jbupt.200501.75.zheng

• 论文 • 上一篇    下一篇

基于遗传算法的动态模糊聚类基于遗传算法的动态模糊聚类

郑 岩 黄荣怀 战晓苏 周春光   

  1. 1.北京邮电大学 计算机科学与技术学院, 北京 100876; 2.北京师范大学 信息科学学院, 北京 100875; 3.北京邮电大学 电子工程学院, 北京 100876; 4.吉林大学 计算机科学与技术学院, 长春 130023
  • 出版日期:2005-02-28 发布日期:2005-02-28

Dynamic Fuzzy Clustering Method Based on Genetic Algorithm

ZHENG Yan, HUANG Rong-huai, ZHAN Xiao-su, ZHOU Chun-guang   

  1. 1. School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Information Science, Beijing Normal University, Beijing 100875, China;
    3. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    4. School of Computer Science and Technology, Jilin University, Changchun 130023, China
  • Online:2005-02-28 Published:2005-02-28

摘要:

提出了一种基于遗传算法的动态模糊聚类方法。通过计算样本之间的模糊相似性,不失真地反映它们之间的内在关联。同时将样本之间的模糊相似性映射到样本之间的欧氏距离,即将高维样本映射到二维平面。利用遗传算法不断优化两者之间的映射,使样本之间的欧氏距离逐步趋近于其模糊相似性,实现动态模糊聚类。克服了聚类有效性对样本分布的依赖性;同时,增加了聚类的灵活性和可视化。该方法在性能上较经典的模糊聚类算法有一定改进,具有较好的聚类效果和较快的收敛速度。仿真实验结果证明了该方法的可行性和有效性。

关键词: 动态模糊聚类, 模糊相似矩阵, 遗传算法

Abstract:

A dynamic fuzzy clustering method is presented based on the genetic algorithm. By calculating the fuzzy similarity between samples the essential associations among samples are modeled factually. The fuzzy similarity between two samples is mapped into their Euclidean distance, that is, the high dimensional samples are mapped into the two dimensional plane. The mapping is optimized globally by the genetic algorithm, which adjusts the coordinates of each sample, and thus the Euclidean distance, to approximate to the fuzzy similarity between samples gradually. A key advantage of the proposed method is that the clustering is independent of the space distribution of input samples, which improves the flexibility and visualization. This method possesses characteristics of faster convergence rate and more exact clustering results than some typical clustering algorithms. Simulated experiments show the feasibility and availability of the proposed method.

Key words: dynamic fuzzy clustering, fuzzy similarity matrix, genetic algorithm

中图分类号: