北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2022, Vol. 45 ›› Issue (4): 37-43.doi: 10.13190/j.jbupt.2021-242

• 智慧医疗 • 上一篇    下一篇

一种基于对抗训练的医疗问答匹配方法

付洁琼1,2, 孙亚伟1,2, 刘建毅3, 李金斌4   

  1. 1. 北京邮电大学 计算机学院(国家示范性软件学院), 北京 100876;
    2. 北京邮电大学 可信分布式计算与服务教育部重点实验室, 北京 100876;
    3. 北京邮电大学 网络空间安全学院, 北京 100876;
    4. 中国医学科学院 国家人口健康科学数据中心, 北京 100005
  • 收稿日期:2021-10-18 出版日期:2022-08-28 发布日期:2022-06-26
  • 通讯作者: 孙亚伟(1992—),男,博士生,邮箱:sunyawei@bupt.edu.cn。 E-mail:sunyawei@bupt.edu.cn
  • 作者简介:付洁琼(1998—),女,硕士生。
  • 基金资助:
    国家自然科学基金项目(U1936216)

Medical Question-Answer Matching Base on Adversarial Training

FU Jieqiong1,2, SUN Yawei1,2, LIU Jianyi3, LI Jinbin4   

  1. 1. School of Computer Science(National Pilot Software Engineering School), Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. Key Laboratory of Trustworthy Distributed Computing and Service(Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876, China;
    3. School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    4. National Population Health Data Center, Chinese Academy of Medical Sciences, Beijing 100005, China
  • Received:2021-10-18 Online:2022-08-28 Published:2022-06-26

摘要: 相较于英文开放领域的问答匹配,中文专业医疗领域的问答匹配任务更具有挑战性。针对中文语义和医疗数据的复杂、多样,大多数研究人员都专注于设计繁杂的神经网络来探索更深层次的文本语义,工作思路较为单一,同时神经网络模型很容易因为微小扰动而误判,模型的泛化能力较差。为此,提出了一种基于对抗训练的问答匹配模型,利用双向预训练编码器来捕获问答句的语义信息,从而得到对应的向量表征;再通过在词嵌入表示上添加扰动因子生成对抗样本;最后将初始样本和对抗样本共同输入带有线性层的模型中进行分类预测。在cMedQA V2.0数据集上通过对比实验证明了对抗训练可以有效提升问答匹配模型的性能。

关键词: 医疗问答, 对抗训练, 自然语言处理

Abstract: Compared with the question-answer matching task in the English open domain, the task in the Chinese professional medical field is more challenging.In view of the complexity of Chinese semantics and the diversity of medical data,most researchers focus on designing complex neural networks to explore deeper text semantics, and this kind of idea is relatively simple.At the same time, the neural network model is easy to make misjudgments due to small disturbances, and the poor generalization ability of the model.To solve these issues,a question-answer matching model is proposed based on adversarial training. A bidirectional pre-training encoder is used in this model to capture the semantic information of question-answer sentences and to obtain the corresponding vector representation. Then, adversarial samples are generated by adding a disturbance factor to the word embedding representation.Finally, the initial samples and adversarial samples are jointly input into the model with linear layers for classification prediction.Comparative experiments demonstrate that adversarial training can effectively improve the performance of the question-answer matching model on the cMedQA V2.0 dataset.

Key words: medical question-answer, adversarial training, natural language processing

中图分类号: