[1] 杨朔, 吴帆, 陈贵海. 移动群智感知网络中信息量最大化的用户选择方法研究[J]. 计算机学报, 2020, 43(3):409-422. YANG S, WU F, CHEN G H. On designing most infor-mative user selection methods for mobile crowdsensing[J]. Chinese Journal of Computers, 2020, 43(3):409-422. [2] BHATTACHARJEE S, GHOSH N, SHAH V K, et al. QnQ:quality and quantity based unified approach for secure and trustworthy mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2020, 19(1):200-216. [3] QIU T, LIU J, SI W S, et al. Robustness optimization scheme with multi-population co-evolution for scale-free wireless sensor networks[J]. IEEE/ACM Transactions on Networking, 2019, 27(3):1028-1042. [4] QIU T, ZHAO A Y, XIA F, et al. ROSE:robustness strategy for scale-free wireless sensor networks[J]. IEEE/ACM Transactions on Networking, 2017, 25(5):2944-2959. [5] YANG J L, WANG J S, TAY W P. Using social network information in community-based Bayesian truth discovery[J]. IEEE Transactions on Signal and Information Processing Over Networks, 2019, 5(3):525-537. [6] AUGUSTIN A, VENANZI M, ROGERS A, et al. Bayesian aggregation of categorical distributions with applications in crowdsourcing[C]//Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. Melbourne:International Joint Conferences on Artificial Intelligence Organization, 2017:1411-1417. [7] DU Y, SUN Y, HUANG H, et al. Bayesian co-clustering truth discovery for mobile crowd sensing systems[J]. IEEE Transactions on Industrial Informatics, 2020, 16(2):1045-1057. [8] WANG X, JIA R H, TIAN X H, et al. Location-aware crowdsensing:dynamic task assignment and truth inference[J]. IEEE Transactions on Mobile Computing, 2020, 19(2):362-375. [9] GAO X F, HUANG H W, LIU C L, et al. Quality inference based task assignment in mobile crowdsensing[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(10):3410-3423. [10] YANG S, WU F, TANG S J, et al. On designing data quality-aware truth estimation and surplus sharing method for mobile crowdsensing[J]. IEEE Journal on Selected Areas in Communications, 2017, 35(4):832-847. [11] WU F, YANG S, ZHENG Z Z, et al. Fine-grained user profiling for personalized task matching in mobile crowdsensing[J]. IEEE Transactions on Mobile Computing, 2021, 20(10):2961-2976. [12] FIANDRINO C, ANJOMSHOA F, KANTARCI B, et al. Sociability-driven framework for data acquisition in mobile crowdsensing over fog computing platforms for smart cities[J]. IEEE Transactions on Sustainable Computing, 2017, 2(4):345-358. [13] LIU C H, ZHANG B, SU X, et al. Energy-aware participant selection for smartphone-enabled mobile crowd sensing[J]. IEEE Systems Journal, 2017, 11(3):1435-1446. [14] WU D P, LIU Q R, WANG H G, et al. Socially aware energy-efficient mobile edge collaboration for video distribution[J]. IEEE Transactions on Multimedia, 2017, 19(10):2197-2209. [15] WU D P, LI H P, WANG R Y. User characteristic aware participant selection for mobile crowdsensing[J/OL]. Sensors (Basel, Switzerland), 2018, 18(11):3959[2021-09-21]. https//doi.org/10.3390/s18113959. [16] TAO D, GAO R P, SUN H B. Sensing-gain constrained participant selection mechanism for mobile crowdsensing[J]. Personal and Ubiquitous Computing, 2020(5):1-15. [17] LI Q, LI Y, GAO J, et al. Resolving conflicts in heterogeneous data by truth discovery and source reliability estimation[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2014:1187-1198. |