北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (6): 13-19.doi: 10.13190/j.jbupt.2021-072

• 论文 • 上一篇    下一篇

一种面向弱纹理图像的特征点描述子

程鹏飞1, 周修庄2, 唐玲2, 魏世民1, 高欢1   

  1. 1. 北京邮电大学 现代邮政学院, 北京 100876;
    2. 北京邮电大学 人工智能学院, 北京 100876
  • 收稿日期:2021-04-28 出版日期:2021-12-28 发布日期:2021-12-28
  • 通讯作者: 唐玲(1986—),女,高级工程师,硕士生导师,E-mail:tangling@bupt.edu.cn. E-mail:tangling@bupt.edu.cn
  • 作者简介:程鹏飞(1995—),男,硕士生.
  • 基金资助:
    国家自然科学基金项目(61972046);北京市自然科学基金项目(4202051)

A Feature Point Descriptor for Texture-Less Images

CHENG Peng-fei1, ZHOU Xiu-zhuang2, TANG Ling2, WEI Shi-min1, GAO Huan1   

  1. 1. School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2021-04-28 Online:2021-12-28 Published:2021-12-28

摘要: 现有的大多数特征点提取算法适用于处理纹理丰富的图像,而对于弱纹理图像则无法提取有效的特征点. 对此,提出了多邻域结构张量特征(MNSTF)算法. 基于一系列固定的邻域和图像结构张量,通过表达局部图像的结构和纹理信息,解决了弱纹理和无纹理场景下特征点提取和匹配等相关问题;同时,通过计算邻域之间的相对方向,实现了MNSTF算法特征描述子的旋转不变性. 实验结果表明,MNSTF算法在经过旋转的弱纹理图像测试集上的特征点匹配准确率达到了99.9%以上,验证了其良好的适用性、旋转不变性和鲁棒性.

关键词: 特征点描述子, 多邻域, 结构张量, 弱纹理图像

Abstract: Most of the existing feature point extraction algorithms are suitable for processing images with rich texture, but they cannot extract effective feature points for texture-less images. To solve this problem, a new feature point descriptor, termed as multi-neighborhood structure tensor features (MNSTF) is proposed. The algorithm is based on a series of fixed neighborhoods and image structure tensors. By expressing the structure and texture information of local images, it solves the problems such as feature point extraction and matching in texture-less and non-texture scenes in existing feature point extraction algorithms. At the same time, by calculating the relative direction between neighborhoods, the rotation invariance of the MNSTF feature descriptor. The experimental results show that the accuracy of feature point matching of the MNSTF algorithm on the rotated texture-less image test set is over 99.9%, which verifies the good applicability, rotation invariance and robustness of the MNSTF feature descriptor.

Key words: feature point descriptor, multi-neighborhood, structure tensor, texture-less images

中图分类号: