北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (6): 33-39,66.doi: 10.13190/j.jbupt.2021-052

• 论文 • 上一篇    下一篇

基于分布式惯导测量的机翼弹性形变算法

张华强1, 刘林1, 秦昌礼1, 陈雨2, 苏庆华3   

  1. 1. 山东理工大学 机械工程学院, 淄博 255049;
    2. 北京航天发射技术研究所, 北京 100076;
    3. 北京物资学院 信息学院, 北京 101149
  • 收稿日期:2021-04-08 出版日期:2021-12-28 发布日期:2021-12-28
  • 作者简介:张华强(1982—),男,副教授,硕士生导师,E-mail:huangqiang.zhang@163.com.
  • 基金资助:
    国家自然科学基金青年基金项目(61803035)

Aircraft Elastic Wing Deformation Algorithm Based on Distributed Inertial Navigation Measurement

ZHANG Hua-qiang1, LIU Lin1, QIN Chang-li1, CHEN Yu2, SU Qing-hua3   

  1. 1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255049, China;
    2. Beijing Institute of Space Launch Technology, Beijing 100076, China;
    3. School of Information Engineering, Beijing Wuzi University, Beijing 101149, China
  • Received:2021-04-08 Online:2021-12-28 Published:2021-12-28

摘要: 飞机在飞行过程中产生的机翼弹性形变难以预测,对此,提出了一种基于分布式惯性导航的机翼形变测量方法. 首先,根据机翼的模态信息及理论模型利用粒子群算法对机翼上的关键测试点进行了布局优化研究;其次,提出了一种相对运动惯性导航解算方法,建立相对惯性导航误差估计的联邦卡尔曼滤波模型,实现了各节点在机翼挠曲变形下的实时对准,并通过联立多子节点的位姿信息描述机翼形变;最后,设计了机翼加载实验,并验证了该算法的精度及有效性. 结果表明,机翼形变测量的三维位置误差与姿态误差均得到了改善,说明该方法具有较高的估计精度并在动态环境中有较好的形变监控能力.

关键词: 弹性形变, 分布式, 相对惯性导航, 数据融合

Abstract: To deal with the difficulties in predicting elastic deformation of aircraft wrings during the flight, a distributed inertial navigation method for wing deformation measurement is proposed. First, the layout optimization of the critical test points on the wing is conducted based on the modal analysis and the thin plate model combined with the particle swarm optimization algorithm. Second, a relative motion inertial navigation calculating method is proposed by establishing the federated Kalman filter model for the estimation of the relative inertial navigation error. It achieves real-time alignment of each node under wing flexure deformation. Then, wing deformation is described by the positional information of multiple sub-nodes simultaneously. Finally, a wing loading test is conducted to verify the accuracy and effectiveness of the algorithm. The results show that the root means squares (RMSs) of the wing's three-directional position are 0.534 mm, 0.547 mm, 0.451 mm, respectively, and the RMSs of the wing's three-directional posture are 0.772', 2.87', 0.541', respectively. The results demonstrate that the proposed method has high estimation accuracy and good deformation monitoring ability in a dynamic environment.

Key words: elastic deflection, distributed, relative inertial navigation, data fusion

中图分类号: