北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2021, Vol. 44 ›› Issue (3): 73-78.doi: 10.13190/j.jbupt.2020-145

• 论文 • 上一篇    下一篇

有标记网络中的病毒传播机理及动态特性

卓新建, 王文璇, 李慧嘉   

  1. 北京邮电大学 理学院, 北京 100876
  • 收稿日期:2020-09-30 出版日期:2021-06-28 发布日期:2021-06-23
  • 通讯作者: 李慧嘉(1985-),男,教授,E-mail:hjli@bupt.edu.cn. E-mail:hjli@bupt.edu.cn
  • 作者简介:卓新建(1971-),男,副教授.
  • 基金资助:
    北京邮电大学提升科技创新能力行动计划项目(2020XD-A01-1);国家自然科学基金项目(71871233);北京市自然科学基金项目(1202020)

The Epidemic Spreading Mechanism and Dynamic Characteristics on Signatured Networks

ZHUO Xin-jian, WANG Wen-xuan, LI Hui-jia   

  1. School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2020-09-30 Online:2021-06-28 Published:2021-06-23

摘要: 大数据环境下传播行为及动态演化形式是多元化的,其模型构建也各不相同.因此针对存在不同性质个体的有标记网络,探索了病毒传播模型与动态演化机制.首先将改进的有标记-易感染-已感染-易感染(S-SIS)传播模型应用到有标记网络,通过调节参数研究其对病毒传播的影响.改进了传统模型中传染概率为常数的假设,更好地模拟了感染状态的动态演化,构建了感染状态实时变化的感染概率方程,准确模拟了有标记网络中的病毒传播行为.最后利用平均场理论和蒙特卡洛方法进行仿真,对比检验不同参数变化对模型的影响.为了观察具有不同拓扑结构网络上的表现,对埃尔德什-雷尼随机网络与无标度网络进行了深入实验,得出了一系列新颖的结论.

关键词: 有标记网络, 易感染-已感染-易感染模型, 动态演化机制, 蒙特卡洛模拟, 平均场模型仿真

Abstract: Spreading behavior and its dynamic evolution in the context of big data are diversified, and thousands of information dissemination models have been developed. In this paper, aiming at the signatured network model with multi-types individuals, the spreading behavior and dynamical properties were explored. Firstly, the improved signatured-susceptible-infected-susceptible (S-SIS) model is applied to the signatured network, and then in order to simulate the spreading dynamical process. Specially, and simulate the dynamic evolution of the infection, the assumption in the existing model that the infection probability is constant is improved, an infection probability equation that changes in real time is constructed, and the spreading behavior in the signatured network is accurately simulated. Finally, mean filed analysis and Monte Carlo simulation is made to get the simulation result of the model. By adjusting the parameters and comparing the results, useful conclusions can be drawn. In order to observe the performance of networks with different topologies, Erdos-Rainey random network and scale-free network are simulated to observe the characteristic with different topology of networks, and the difference is observed in the simulation results.

Key words: signatured network, susceptible-infected-susceptible model, dynamic evolution process, Monte Carlo algorithm, mean filed analysis

中图分类号: