[1] Chan T H, Jia K, Cao S, et al. PCANet:a simple deep learning baseline for image classification?[J]. IEEE Transactions on Image Processing, 2015, 24(12):5017-5032. [2] Boulkenafet Z, Komulainen J, Hadid A. Face anti-spoofing based on color texture analysis[C]//International Conference on Biometrics. Phuket:IEEE, 2015:2636-2640. [3] Boulkenafet Z, Komulainen J, Hadid A. Face spoofing detection using color texture analysis[J]. IEEE Transactions on Information Forensics and Security, 2016, 11(8):1818-1830. [4] Boulkenafet Z, Komulainen J, Hadid A. Face antispoofing using speeded-up robust features and fish vector encoding[J]. IEEE Signal Processing Letters, 2017, 24(2):141-145. [5] Garcia D C, Queiroz R L. Face-spoofing 2D-detection based on moire-pattern analysis[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(4):778-786. [6] Galbally J, Marcel S, Fierrez J. Image quality assessment for fake biometric detection:application to iris, fingerprint, and face recognition[J]. IEEE Transactions on Image Processing, 2014, 23(2):710-724. [7] Wen D, Han H, Jain A K. Face spoof detection with image distortion analysis[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(4):746-761. [8] Rehman Y A U, Po L M, Liu M. Deep learning for face anti-spoofing:an end-to-end approach[C]//IEEE Conference on Signal Processing. Poznan:IEEE, 2017:195-200. [9] Nagpal C, Dubey S R. A performance evaluation of convolutional neural networks for face anti spoofing[J/OL].[2019-03-27]. https://arxiv.org/abs/1805.04176. [10] Atoum Y, Liu Y, Jourabloo A, et al. Face anti-spoofing using patch and depth-based CNNs[C]//IEEE International Joint Conference on Biometrics. Denver:IEEE, 2017:319-328. [11] Liu Y, Jourabloo A, Liu X. Learning deep models for face anti-spoofing:binary or auxiliary supervision[C]//IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018:389-398. [12] George A, Marcel S. Deep pixel-wise binary supervision for face presentation attack detection[J/OL].[2019-07-09]. https://arxiv.org/abs/1907.04047. [13] Li L, Feng X, Jiang X, et al. Face anti-spoofing via deep local binary patterns[C]//International Conference on Image Processing. Beijing:IEEE, 2017:101-105. [14] Li H, Li W, Cao H, et al. Unsupervised domain adaptation for face anti-spoofing[J]. IEEE Transactions on Information Forensics and Security, 2018, 13(7):1794-1809. [15] Zhang Z, Yan J, Liu S, et al. A face antispoofing database with diverse attacks[C]//International Conference on Biometrics. New Delhi:IEEE, 2012:26-31. [16] Chingovska I, Anjos A, Marcel S. On the effectiveness of local binary patterns in face anti-spoofing[C]//IEEE International Conference of Biometrics Special Interest Group. Darmstadt:IEEE, 2012:183-194. [17] Boulkenafet Z, Komulainen J, Li L, et al. OULU-NPU:a mobile face presentation attack database with real-world variations[C]//IEEE International Conference on Automatic Face and Gesture Recognition. Washington, DC:IEEE, 2017:612-618. [18] Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[C]//IEEE Conference on Computer Vision and Pattern Recognition. Kauai:IEEE, 2001:511-518. |