[1] Kudekar S, Richardson T J, Urbanke R L. Threshold saturation via spatial coupling:why convolutional LDPC ensembles perform so well over the BEC[J]. IEEE Transactions on Information Theory, 2011, 57(2):803-834.
[2] Kudekar S, Richardson T J, Urbanke R L. Spatially coupled ensembles universally achieve capacity under belief propagation[J]. IEEE Transactions on Information Theory, 2013, 59(12):7761-7813.
[3] Sanatkar M R, Pfister H D. Increasing the rate of spatially-coupled codes via optimized irregular termination[C]//2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). Brest:IEEE Press, 2016:31-35.
[4] Kwak H, Kim J, Jong-Seon. Rate-loss reduction of SC-LDPC codes by optimizing reliable variable nodes via expected graph evolution[C]//2017 IEEE International Symposium on Information Theory (ISIT). Aachen:IEEE Press, 2017:2930-2934.
[5] Kwak H, No J, Park H. Design of irregular SC-LDPC codes with non-uniform degree distributions by linear programming[J]. IEEE Transactions on Communications, 2019, 67(4):2632-2646.
[6] Chen Shuang, Peng Kewu, Zhang Yushu, et al. Optimization of finite-length SC-LDPC for uplink NOMA[C]//2018 IEEE International Conference on Communications Workshops (ICC Workshops). Kansas City, MO:IEEE Press, 2018:1-6.
[7] Thorpe J. Low-density parity-check (LDPC) codes constructed from protographs[J]. Interplanetary Network Progress Report, 2003, 42(154):1-7.
[8] Divsalar D, Dolinar S, Jones C. Constructions of protograph LDPC codes with linear minimum distance[C]//2006 IEEE International Symposium on Information Theory. Seattle, WA:IEEE Press, 2006:664-668.
[9] Mitchell D G M, Lentmaier M, Costello D J. Spatially coupled LDPC codes constructed from protographs[J]. IEEE Transactions on Information Theory, 2015, 61(9):4866-4889. |