[1] Karaboga D, Kaya E. An adaptive and hybrid artificial bee colony algorithm(aABC) for ANFIS training[J]. Neural Computing and Applications, 2014, 25(7-8):1967-1978.
[2] Goel S, Singh J, Ojha N. Intelligent aircraft landing decision support system using artificial bee colony[C]//Proc of the 3th International Conference on Computing for Sustainable Global Development. Piscataway:IEEE, 2016:2412-2416.
[3] Li X N, Yang G F. Artificial bee colony algorithm with memory[J]. Applied Soft Computing, 2016, 41(4):362-372.
[4] Zhu G, Kwong S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7):3166-3173.
[5] Banharnsakun A, Sirinaovakul B, Achalakul T. The performance and sensitivity of the parameters setting on the best-so-far ABC[C]//International Conference on Simulated Evolution & Learning.[S.l.]:Springer-Verlag, 2012:248-257.
[6] Jadon S S, Bansal J C, Tiwari R, et al. Artificial bee colony algorithm with global and local neighborhoods[J]. International Journal of System Assurance Engineering and Management, 2010, 1(3):189-200.
[7] Sharma H, Sharma S, Kumar S. Lbest Gbest artificial bee colony algorithm[C]//International Conference on Advances in Computing. NY:IEEE, 2016:119-124.
[8] 周新宇, 吴志健, 王文明. 基于正交实验设计的人工蜂群算法[J]. 软件学报, 2015, 26(9):2167-2190. Zhou X Y, Wu Z J, Wang W M. Artificial bee colony algorithm based on orthogonal experimental design[J]. Journal of Software, 2015, 26(9):2167-2190.
[9] Kiran M S, Findik O. A directed artificial bee colony algorithm[J]. Applied Soft Computing, 2015, 46(2):534-546.
[10] Du Z, Han D, Li K C. Improving the performance of feature selection and data clustering with novel global search and elite-guided artificial bee colony algorithm[J]. The Journal of Supercomputing, 2019, 75(2):5189-5226.
[11] Rajasingam N, Rasi D, Deepa S N. Optimized deep learning neural network model for doubly fed induction generator in wind energy conversion systems[J]. Soft Computing-A Fusion of Foundations, Methodologies and Applications, 2019, 23(8):8453-8470.
[12] Mala D J, Kamalapriya M, Shobana R, et al. A non-pheromone based intelligent Swarm Optimization Technique in Software Test Suite Optimization[C]//International Conference on Intelligent Agent & Multi-agent Systems.[S.l.]:IEEE Press, 2009:1-5.
[13] Tuba M, Bacanin N. Artificial bee colony algorithm hybridized with firefly algorithm for cardinality constrained mean-variance portfolio selection problem[J]. Applied Mathematics & Informaion Sciences, 2014, 8(6):2831-2844.
[14] Neelima S, Satyanarayana N, Murthy P K. Optimization of association rule mining using hybridized artificial bee colony (ABC) with BAT algorithm[C]//Advance Computing Conference.[S.l.]:IEEE, 2017:831-834.
[15] Zhiyan Shi, Dan Bao, Yan Fan, et al. The asymptotic equipartition property of Markov chains in single infinite Markovian environment on countable state space[J]. Stochastics, 2019, 91(1):1-13.
[16] Komorowski T, Peszat S, Szare K. On ergodicity of some Markov processes[J]. Annals of Probability, 2010, 38(4):1401-1443.
[17] Suganthan P N, Hansen N, Liang J J, et al. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization[R]. Singapore:Nanyang Technological University, 2005.
[18] Zhou X, Wu Z, Wang H, et al. Enhancing differential evolution with role assignment scheme[J]. Soft Computing, 2014, 18(11):2209-2225.
[19] Xiong G, Shi D, Duan X. Enhancing the performance of biogeography-based optimization using polyphyletic migration operator and orthogonal learning[J]. Computers & Operations Research, 2014, 41(1):125-139.
[20] 杜振鑫, 刘广钟, 韩德志. 改进基于记忆的人工蜂群算法[J]. 北京邮电大学学报, 2017, 40(5):61-66. Du Z X, Liu G Z, Han D Z. An improved artificial bee colony algorithm with memory[J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(5):61-66. |