[1] Akpakwu G A, Silva B J, Hancke G P, et al. A survey on 5G networks for the internet of things:communication technologies and challenges[J]. IEEE Access, 2018(6):3619-3647.
[2] 3GPP. TS 36-2016, 321 medium access control (MAC) protocol specification V13. 3. 0[S]. New Orleans:3GPP Press, 2016:93.
[3] Hoglund A, Van D P, Tirronen T, et al. 3GPP release 15 early data transmission[J]. IEEE Commun Stand Mag, 2018, 2(2):90-96.
[4] Yang W, Wang M, Zhang J, et al. Narrowband wireless access for low-power massive internet of things:a bandwidth perspective[J]. IEEE Wirel Commun, 2017, 24(3):138-145.
[5] Chakrapani A. Efficient resource scheduling for eMTC/NB-IoT communications in LTE Rel. 13[C]//2017 IEEE Conference on Standards for Communications and Networking (CSCN). Helsinki:IEEE Press, 2017:66-71.
[6] 李贵勇, 黄俊杰. eMTC终端eDRX空闲过程的研究与实现[J]. 光通信研究, 2018(2):71-74. Li Guiyong, Huang Junjie. Research and implementation of idle state of eDRX in eMTC terminal[J]. Study on Optical Communications, 2018(2):71-74.
[7] 徐芙蓉, 李新, 李秋香, 等. NB-IoT和eMTC覆盖能力对比[J]. 移动通信, 2017, 41(23):27-33. Xu F R, Li X, Li Q X, et. al. Comparison of coverage capability for NB-IoT and eMTC[J]. Mobile Communications, 2017, 41(23):27-33.
[8] Rico-Alvarino A, Vajapeyam M, Xu H, et al. An overview of 3GPP enhancements on machine to machine communications[J]. IEEE Commun Mag, 2016, 54(6):14-21.
[9] Elsaadany M, Ali A, Hamouda W. Cellular LTE-A technologies for the future internet-of-things:physical layer features and challenges[J]. IEEE Commun Surv Tutor, 2017, 19(4):2544-2572.
[10] Bockelmann C, Pratas N K, Wunder G, et al. Towards massive connectivity support for scalable mMTC communications in 5G networks[J]. IEEE Access, 2018(6):28969-28992.
[11] NOKIA. LTE evolution for IoT connectivity [EB/OL]. 2016(2016-11-6)[2018-7-27]. https://halberdbastion.com/sites/default/files/2017-06/Nokia_LTE_Evolution_for_IoT_Connectivity_White_Paper.pdf.
[12] Elsaadany M, Hamouda W. The new enhancements in LTE-A Rel-13 for reliable machine type communications[C]//2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC). Montreal, QC:IEEE Press, 2017:1-5.
[13] 3GPP. TR 36. 888 study on provision of low-cost machine-type communications (MTC) user equipments (UEs) based on LTE V1200[S]. Oranjestad:3GPP Press, 2013:17.
[14] Schalkwyk T. 3GPP LPWA Standards:LTE-M, NB-IoT & EC-GSM [EB/OL]. 2017(2017-09-14)[2018-07-27]. https://m2mconnectivity.com.au/downloads/LPWAN%20Downloads/%28Cellular%29SierraWire-less_M2MConnectivity%282017%29_watermarked.pdf.
[15] Qualcomm. Whitepaper-paving the path to narrowband 5G with LTE internet of things [EB/OL]. 2016(2016-6-24)[2018-07-27]. https://www.qualcomm.cn/media/documents/files/paving-the-path-to-narrowband-5g-with-lte-iot.pdf.
[16] 3GPP. 3GPP TS 36. 133-2017, Evolved universal terrestrial radio access (E-UTRA); requirements for support of radio resource management V14. 4. 0[S]. West Palm Beach, Florida:3GPP Press, 2017:2584.
[17] 3GPP. 3GPP TS 36. 305-2017, Evolved universal terrestrial radio access network (E-UTRAN); stage 2 functional specification of user equipment (UE) positioning in E-UTRAN V14. 1. 0[S]. Dubrovnik:3GPP Press, 2017:78.
[18] 5G Americas. LTE progress leading to the 5G massive internet of things [EB/OL]. 2017(2017-12-6)[2018-7-27]. http://www.5gamericas.org/files/8415/1250/0673/LTE_Progress_Leading_to_the_5G_Massive_Internet_of_Things_Final_12.5.pdf.
[19] Balevi E, Rabee F T A, Gitlin R D. ALOHA-NOMA for massive machine-to-machine IoT communication[C]//2018 IEEE International Conference on Communications (ICC). Kansas City:IEEE Press, 2018:1-5.
[20] Qualcomm. Leading the LTE IoT evolution to connect the massive internet of things [EB/OL]. 2018(2018-06-14)[2018-07-27]. https://www.qualcomm.com/media/documents/files/leading-the-lte-iot-evolution-to-connect-the-massive-internet-of-things.pdf.
[21] Kouzayha N, Dawy Z, Andrews J G, et al. Joint Downlink/uplink RF wake-up solution for IoT over cellular networks[J]. IEEE Trans Wirel Commun, 2018, 17(3):1574-1588.
[22] Rostami S, Heiska K, Puchko O, et al. Wireless powered wake-up receiver for ultra-low-power devices[C]//Wireless Communications and Networking Conference (WCNC), 2018 IEEE. Barcelona:IEEE Press, 2018:1-5.
[23] Huang Y, Chen Y, Hou Y T, et al. Recent advances of LTE/WiFi coexistence in unlicensed spectrum[J]. IEEE Netw, 2018, 32(2):107-113.
[24] Sutton G J, Zeng J, Liu R P, et al. Enabling ultra-reliable and low-latency communications through unlicensed spectrum[J]. IEEE Netw, 2018, 32(2):70-77. |