北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2015, Vol. 38 ›› Issue (6): 81-86.doi: 10.13190/j.jbupt.2015.06.017

• 研究报告 • 上一篇    下一篇

基于协同谱聚类的推荐系统托攻击防御算法

杨欐1, 钮心忻1, 黄玮2   

  1. 1. 北京邮电大学 计算机科学与技术学院, 北京 100876;
    2. 中国传媒大学 计算机学院, 北京 100024
  • 收稿日期:2014-12-14 出版日期:2015-12-28 发布日期:2015-12-01
  • 作者简介:杨欐(1988—),女,博士生,E-mail:yangli1988@bupt.edu.cn;钮心忻(1963—),女,教授,博士生导师.
  • 基金资助:

    国家自然科学基金项目(61121061)

Shilling Attack Defense Algorithm for Recommender System Based on Spectral Co-Clustering

YANG Li1, NIU Xin-xin1, HUANG Wei2   

  1. 1. School of Computer Science and Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
    2. School of Computer Science, Communication University of China, Beijing 100024, China
  • Received:2014-12-14 Online:2015-12-28 Published:2015-12-01

摘要:

提出了一种基于协同谱聚类的推荐系统托攻击防御算法. 该算法首先使用谱聚类方法对协同聚类算法进行改进,以在用户和项目2个维度上同时进行聚类;接着在聚类基础上结合分级偏离平均度对用户进行项目推荐. 实验测试结果表明,在同等托攻击规模的情况下,该算法可以降低实施托攻击的用户和攻击数据对系统推荐结果的影响.

关键词: 协同谱聚类, 分级偏离平均度, 托攻击, 推荐系统

Abstract:

An algorithm for recommender system based on spectral co-clustering was proposed to defend shilling attacks. The proposed algorithm maintains spectral clustering and co-clustering priors and allows a mixed membership in user and item clusters. The rating deviations were used for mean agreement based on the co-clustering results to recommend for users. Experimental results demonstrated that under the same shilling attack dimensions, our algorithm could decrease the shilling attack affects to recommender systems apparently.

Key words: spectral co-clustering, rating deviation from mean agreement, shilling attack, recommender system

中图分类号: