[1] Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.[2] Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data[J]. Data Mining and Knowledge Discovery, 2005, 11(1): 5-33.[3] Cheng Chunhung, Fu Waichee, Zhang Yi. Entropy-based subspace clustering for mining numerical data[C]//Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego: ACM Press, 1999: 84-93.[4] Woo K G, Lee J H, Kim M H, et al. FINDIT: a fast and intelligent subspace clustering algorithm using dimension voting[J]. Information and Software Technology, 2004, 46(4): 255-271.[5] 朱林, 雷景生, 毕忠勤, 等. 一种基于数据流的软子空间聚类算法[J]. 软件学报, 2013, 24(11): 2610-2627. Zhu Lin, Lei Jingsheng, Bi Zhongqin, et al. Soft subspace clustering algorithm for streaming data[J]. Journal of Software, 2013, 24(11): 2610-2627.[6] Jing Liping, Ng M K, Huang Joshuazhexue. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(8): 1026-1041.[7] Stephan G, Ines F, Kittipat V, et al. Subspace correlation clustering: finding locally correlated dimensions in subspace projections of the data[C]//Proceedings of 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Beijing: ACM Press, 2012: 352-360. |