北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (3): 43-47,52.doi: 10.13190/j.jbupt.2014.03.009

• 论文 • 上一篇    下一篇

MIMO-OFDM系统的SAGE-IPSO联合估计检测

高敬鹏, 赵旦峰, 黄湘松, 周相超   

  1. 哈尔滨工程大学 信息与通信工程学院, 哈尔滨 150001
  • 收稿日期:2013-07-01 出版日期:2014-06-28 发布日期:2014-06-08
  • 作者简介:高敬鹏(1980-),男,博士生,E-mail:gjpmcu@126.com;赵旦峰(1961-),男,教授,博士生导师.
  • 基金资助:

    国家自然科学基金项目(F010201);中央高校基本科研业务专项基金项目(HEUCF130802)

SAGE-IPSO Joint Estimation and Detection for MIMO-OFDM Systems

GAO Jing-peng, ZHAO Dan-feng, HUANG Xiang-song, ZHOU Xiang-chao   

  1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
  • Received:2013-07-01 Online:2014-06-28 Published:2014-06-08

摘要:

针对多输入多输出-正交频分复用系统中最大似然检测算法难以硬件实现以及传统的信道估计性能较差等缺陷,提出了一种联合估计检测算法. 该算法使用离散傅里叶变换-最小二乘(DFT-LS)算法进行信道初估计,利用广义空间迭代期望最大化(SAGE)算法对估计的信道信息进行校正,并结合改进的粒子群优化(IPSO)算法完成对信号的迭代检测,使系统性能得到改善. 仿真分析结果表明,算法能以较少的迭代次数估计出信道状态信息和检测数据;在相同误比特率的情况下,性能优于经典检测算法,与理想状态下的最大似然检测算法仅相差1 dB左右.

关键词: 信道估计, 信号检测, 广义空间迭代期望最大化, 改进的粒子群优化

Abstract:

The maximum likelihood detection algorithm for multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system is difficult to realize in hardware and the performance of traditional channel estimation is poor, in order to solve these problems, a joint estimation detection algorithm is proposed. To revise estimated channel using the discrete Fourier transform-least square algorithm for channel estimation and the space alternating generalized expectation maximization algorithm, the iterative signal detection is realized by combining the improved particle swarm optimization algorithm. Simulations show that the proposed algorithm can estimate the channel state information and detect data as well with less iteration number whose performance is much better than the traditional detection algorithm under the same bit error rate. There is only 1 dB difference between the bit error rate performance and the maximum likelihood detection algorithm under ideal channel.

Key words: channel estimation, signal detection, space alternating generalized expectation maximization, improved particle swarm optimization

中图分类号: