北京邮电大学学报

  • EI核心期刊

北京邮电大学学报 ›› 2014, Vol. 37 ›› Issue (3): 38-42.doi: 10.13190/j.jbupt.2014.03.008

• 论文 • 上一篇    下一篇

一种用于社会化标签推荐的主题模型

孙甲申, 王小捷   

  1. 北京邮电大学 计算机学院, 北京 100876
  • 收稿日期:2013-12-01 出版日期:2014-06-28 发布日期:2014-06-08
  • 作者简介:孙甲申(1984-),男,博士,E-mail:b.bigart911@gmail.com;王小捷(1969-),男,教授,博士生导师.
  • 基金资助:

    国家自然科学基金项目(61273365);国家高技术研究发展计划项目(2012AA011104)

A Topic Model for Social Tag Recommendation

SUN Jia-shen, WANG Xiao-jie   

  1. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • Received:2013-12-01 Online:2014-06-28 Published:2014-06-08

摘要:

社会化标签中普遍存在标签的主题粒度和文档不一致以及部分标签和文档内容无关这两个问题,而现有基于主题模型的社会化标签推荐算法并没有同时对二者进行建模. 针对这两点,提出了一种新的主题模型,该模型不仅允许标签和文档具有各自的主题粒度,而且允许标签来自与文档无关的噪声主题. 在两个不同的社会化标签语料上的实验结果表明,所提出的模型相比内容相关模型和标签的隐含狄利克雷分配模型,在混淆度和平均正确率均值这两个指标上均有所提高.

关键词: 社会化标签推荐, 主题模型, 标签主题粒度, 噪声标签

Abstract:

It is common that the topic-granularity of social tags is not consistent with correspondent document, and some tags cannot describe the topic of the document content. The existing topic models-based tag recommendation did not address the foregoing problems simultaneously as well. Motivated by the fact, the proposed novel topic model allows different granularity of word topics and tag topics, and assumes that the tags can originate from a general distribution unrelated to the content. Experimental results show that the proposed model outperforms content relevance model (CRM) and tag- logical device address (tag-LDA) on two different social tagging corpora in both perplexity and mean average precision.

Key words: social tag recommendation, topic model, tag-granularity, noisy tags

中图分类号: