[1] Busoniu L, Babuska R, De Schutter B. A comprehensive survey of multiagent reinforcement learning[J]. IEEE Transactions on Systems, 2008, 38(2): 156-172.[2] Husheng L. Multi-agent Q-learning for Aloha-like spectrum access in cognitive radio systems[C]//Fifth IEEE Workshop on Networking Technologies for Software Defined Radio Networks. Boston: IEEE, 2010: 1-6.[3] Yinglei T, Yong Z, Fang N, et al. Reinforcement learning based auction algorithm for dynamic spectrum access in cognitive radio networks[C]//Proc of 72nd Vehicular Technology Conference Fall. Ottawa: IEEE, 2010: 1-5.[4] 赵成林, 李鹏, 蒋挺. 快速收敛的认知无线电功率控制算法[J]. 北京邮电大学学报, 2009, 32(1): 73-76. Zhao Chenglin, Li Peng, Jiang Ting. A power control algorithm with faster convergence for cognitive radio[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(1): 73-76.[5] Pan Z, Yusun C, Copeland J A. Reinforcement learning for repeated power control game in cognitive radio networks[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(1): 54-69.[6] Attar A, Nakhai M R, Aghvami A H. Cognitive radio game for secondary spectrum access problem[J]. IEEE Transactions on Wireless Communications, 2009, 8(4): 2121-2131.[7] Bowling M, Veloso M. Multiagent learning using a variable learning rate[J]. Artificial Intelligence, 2002, 136(2): 215-250. |