[1] Deller M, Ebert A, Bender M, et al. Flexible gesture recognition for immersive virtual environments[C]//IV'06. London:IEEE, 2006:563-568. [2] Elmezain M, Al-Hamadi A, Michaelis B. Hand trajectory-based gesture spotting and recognition using HMM[C]//ICIP. Cairo:IEEE, 2009:3577-3580. [3] Barros P, Maciel-Junior N T, Fernandes B J T, et al. A dynamic gesture recognition and prediction system using the convexity approach[J]. CVIU, 2017, 155:139-149. [4] Tang Hao, Liu Hong, Xiao Wei, et al. Fast and robust dynamic hand gesture recognition via key frames extraction and feature fusion[J]. Neurocomputing, 2019, 331:424-433. [5] Patil A R, Subbaraman S. A spatiotemporal approach for vision-based hand gesture recognition using Hough transform and neural network[J]. Signal, Image and Video Processing, 2019, 13(2):413-421. [6] Gatto B B, dos Santos E M, Da Silva W S. Orthogonal Hankel subspaces for applications in gesture recognition[C]//SIBGRAPI. Niteroi:IEEE, 2017:429-435. [7] Molchanov P, Gupta S, Kim K, et al. Hand gesture recognition with 3D convolutional neural networks[C]//CVPR. Boston:IEEE, 2015:1-7. [8] Lu Dongwei, Qiu Chu, Xiao Yi. Temporal convolutional neural network for gesture recognition[C]//ICIS. Singapore:IEEE, 2018:367-371. [9] Muralidhar P, Rao C B R. Analysis of block matching motion estimation algorithms[C]//ICCCNT. Tiruchengode:IEEE, 2013:1-4. [10] Singha J, Roy A, Laskar R H. Dynamic hand gesture recognition using vision based approach for human-computer interaction[J]. Neural Computing and Applications, 2018, 29(4):1129-1141. [11] 杨真真, 匡楠, 范露, 等. 基于卷积神经网络的图像分类算法综述[J]. 信号处理, 2018, 34(12):1474-1489. Yang Zhenzhen, Kuang Nan, Fan Lu, et al. Review of image classification algorithms based on convolutional neural networks[J]. Journal of Signal Processing, 2018, 34(12):1474-1489. [12] Kim T K, Cipolla R. Canonical correlation analysis of video volume tensors for action categorization and detection[J]. TPAMI, 2009, 31(8):1415-1428. [13] Shen Xiaohui, Hua Gang, Williams L, et al. Dynamic hand gesture recognition:an exemplar-based approach from motion divergence fields[J]. Image and Vision Computing, 2012, 30(3):227-235. |