[1] 胡长俊, 袁树杰. 矿井WSN自适应能量有效及能耗均衡的数据收集方法[J]. 北京邮电大学学报, 2018, 41(2):86-91. Hu Changjun, Yuan Shujie. An adaptive data collection method of energy efficiency and energy consumption balance in WSN for coal mines[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(2):86-91.
[2] Singh S K, Kumar P, Singh J P. A survey on successors of LEACH protocol[J]. IEEE Access, 2017, 5(99):4298-4328.
[3] 黄利晓, 王晖, 袁利永, 等. 基于能量均衡高效WSN的LEACH协议改进算法[J]. 通信学报, 2017, 38(S2):164-169. Huang Lixiao, Wang Hui, Yuan Liyong, et al. Improved LEACH protocol algorithm for WSN based on energy balance and high efficiency[J]. Journal on Communications, 2017, 38(S2):164-169.
[4] Chen Guihai, Li Chengfa, Ye Mao, et al. EECS:an energy efficient clustering scheme in wireless sensor networks[J]. Journal of Frontiers of Computer Science & Technology, 2007, 3(2-3):99-119.
[5] 刘伟, 杜佳鸿, 贾素玲, 等. 能量有效的无线传感器网络分簇路由协议[J]. 北京航空航天大学学报, 2019, 45(1):50-56. Liu Wei, Du Jiahong, Jia Suling, et al. Energy efficient clustering routing protocol for wireless sensor networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1):50-56.
[6] Dutta R, Gupta S, Das M K. Low-energy adaptive unequal clustering algorithm using fuzzy c-means in wireless sensor networks[J]. Wireless Personal Communications, 2014, 79(2):1187-1209.
[7] 刘宏, 李好威. 基于蚁群优化的非均匀分簇路由算法[J]. 华中科技大学学报(自然科学版), 2018, 46(8):50-54. Liu Hong, Li Haowei. Uneven clustering routing algorithm based on ant colony optimization[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(8):50-54.
[8] Heinzelman W B, Chandrakasan A P, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Transactions on Wireless Communications, 2002, 1(4):660-670.
[9] Shindo T, Xiao J, Kurihara T, et al. Analysis of the dynamic characteristics of firefly algorithm[C]//2015 IEEE Congress on Evolutionary Computation (CEC 2015). Sendai:IEEE, 2015:2647-2652.
[10] Wang Yong, Cai Zixing, Zhou Yuren, et al. Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique[J]. Structural and Multidisciplinary Optimization, 2009, 37(4):395-413. |