[1] Peiravian N, Zhu Xingquan. Machine learning for Android malware detection using permission and API calls[C]//2013 IEEE 25th International Conference on Tools with Artificial Intelligence. Herndon:IEEE Press, 2013:300-305. [2] Chan P P K, Song Wenkai. Static detection of Android malware by using permissions and API calls[C]//2014 International Conference on Machine Learning and Cybernetics. Lanzhou:IEEE Press, 2014:82-87. [3] Aafer Y, Du W, Yin H. DroidAPIMiner:mining API-level features for robust malware detection in Android[C]//International Conference on Security and Privacy in Communication System. Cham:Springer, 2013:86-103. [4] 许艳萍, 伍淳华, 侯美佳, 等. 基于改进朴素贝叶斯的Android恶意应用检测技术[J]. 北京邮电大学学报, 2016, 39(2):43-47. Xu Yanping, Wu Chunhua, Hou Meijia, et al. Android malware detection technology based on improved naive Bayesian[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(2):43-47. [5] Fan Ming, Liu Jun, Wang Wei, et al. DAPASA:detecting Android piggybacked apps through sensitive subgraph analysis[J]. IEEE Transactions on Information Forensics and Security, 2017, 12(8):1772-1785. [6] Gascon H, Yamaguchi F, Arp D, et al. Structural detection of Android malware using embedded call graphs[C]//Proceedings of the 2013 ACM Workshop on Artificial Intelligence and Security. Berlin:ACM, 2013:45-54. [7] Zhou Wu, Zhou Yajin, Grace M, et al. Fast, scalable detection of "Piggybacked" mobile applications[C]//Proceedings of the Third ACM Conference on Data and Application Security and Privacy-CODASPY'13. San Antonio:ACM Press, 2013:185-196. [8] Zhang Bin, Xiao Wentao, Xiao Xi, et al. Ransomware classification using patch-based CNN and self-attention network on embedded N-grams of opcodes[J]. Future Generation Computer Systems, 2020, 110:708-720. [9] Li Dan, Zhao Lichao, Cheng Qingfeng, et al. Opcode sequence analysis of Android malware by a convolutional neural network[J]. Concurrency and Computation:Practice and Experience, 2020, 32(18):e5308. |