[1] Mccrory J P, Al-Jumaili S K, Crivelli D, et al. Damage classification in carbon fibre composites using acoustic emission:A comparison of three techniques[J]. Composites Part B:Engineering, 2015, 68:424-430. [2] Wei Xinchen, Chen Yao, Lu Chao, et al. Acoustic emission source localization method for high-speed train bogie[J]. Multimedia Tools and Applications, 2020, 79:14933-14949. [3] 李昕, 罗更生, 龙盛蓉, 等. 钢板声发射时间反转聚焦增强定位方法[J]. 仪器仪表学报, 2016, 37(8):1792-1799. Li Xin, Luo Gengsheng, Long Shengrong, et al. Location method of acoustic emission by time reversal focusing and enhancing for steel plate[J]. Chinese Journal of Scientific Instrument, 2016, 37(8):1792-1799. [4] 齐添添, 陈尧, 李昕, 等. 基于时间反转的玻璃钢复合板材声发射源定位方法[J]. 仪器仪表学报, 2020, 41(6):208-217. Qi Tiantian, Chen Yao, Li Xin, et al. AE source location method based on time reversal for GFRP plate[J]. Chinese Journal of Scientific Instrument, 2020, 41(6):208-217. [5] 于金涛, 赵树延, 王祁. 基于经验模态分解和小波变换声发射信号去噪[J]. 哈尔滨工业大学学报, 2011, 43(10):88-92. Yu Jintao, Zhao Shuyan, Wang Qi. De-nosing of acoustic emission signals based on empirical mode decomposition and wavelet transform[J]. Journal of Harbin Institute of Technology, 2011, 43(10):88-92. [6] 蒋佳炜, 胡以怀, 柯赟, 等. 基于小波包特征提取和模糊熵特征选择的柴油机故障分析[J]. 振动与冲击, 2020, 39(4):273-277, 298. Jiang Jiawei, Hu Yihuai, Ke Yun, et al. Fault diagnosis of diesel engines based on wavelet packet energy spectrum feature extraction and fuzzy entropy feature selection[J]. Journal of Vibration and Shock, 2020, 39(4):273-277, 298. [7] 陈世平, 王振忠, 俞辉, 等. 改进小波包多阈值去噪法及其工程应用[J]. 中国机械工程, 2017, 28(20):2414-2419. Chen Shiping, Wang Zhenzhong, Yu Hui, et al. Improved wavelet packet multi threshold denoising method and its engineering applications[J]. China Mechanical Engineering, 2017, 28(20):2414-2419. [8] Bianchi D, Mayrhofer E, Groschl M, et al. Wavelet packet transform for detection of single events in acoustic emission signals[J]. Mechanical Systems & Signal Processing, 2015, 64:441-451. [9] 梁晓敏, 周伟, 庞艳荣, 等. 基于小波分析的复合材料层间损伤声发射行为[J]. 玻璃钢/复合材料, 2014, (8):44-48. Liang Xiaomin, Zhou Wei, PangYanrong, et al. Acoustic emission behavior on interlaminar damage of composite based on wavelet analysis[J]. Fiber Reinforced Plastics/Composites, 2014, (8):44-48. [10] Sachse W, Grabec I. Intelligent processing of acoustic emission signals[J]. Materials Evaluation, 1992, 50:826-832. [11] Bhat C, Bhat M, Murthy C. Acoustic emission characterization of failure modes in composites with ANN[J]. Composite Structures, 2003, 61(3):213-220. [12] 郭飞, 张培伟, 张大海, 等. 基于小波包能量特征向量的光纤布拉格光栅低速冲击定位[J]. 振动与冲击, 2017, 36(8):184-189. Guo Fei, Zhang Peiwei, Zhang Dahai, et al. Localization of low-velocity impact by using fiber Bragg grating sensors based on wavelet packet energy eigenvector[J]. Journal of Vibration and Shock, 2017, 36(8):184-189. [13] Lu Jiyun, Wang Bangfeng, Liang Dakai. Wavelet packet energy characterization of low velocity impacts and load localization by optical fiber Bragg grating sensor technique[J]. Applied Optics, 2013, 52:2346-2352. [14] 宁方立, 韩鹏程, 段爽, 等. 基于改进CNN的阀门泄漏超声信号识别方法研究[J]. 北京邮电大学学报, 2020, 43(3):38-44. Ning Fangli, Han Pengcheng, Duan Shuang, et al. Research on identification method of valve leakage ultrasonic signal based on improved CNN[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(3):38-44. [15] 蒋芳, 张南飞, 胡艳军, 等. 基于BP神经网络的CSI无源目标分类方法[J]. 北京邮电大学学报, 2020, 43(1):40-45. Jiang Fang, Zhang Nanfei, Hu Yanjun, et al. BP neural network based CSI device-free target classification method[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(1):40-45. |