[1] Bing Liu. Sentiment analysis and opinion mining[J]. Synthesis Lectures on Human Language Technologies, 2012, 5(1):1-167.[LinkOut] [2] Myers D G. Social psychology[M]. New York:Mcgraw-Hill, 2009:124. [3] 李勇敢, 周学广, 孙艳, 等. 中文微博情感分析研究与实现[J]. 软件学报, 2017, 28(12):3183-3205. Li Yonggan, Zhou Xueguang, Sun Yan, et al. Research and implementation of Chinese microblog sentiment classification[J]. Journal of Software, 2017, 28(12):3183-3205. [4] 李婷婷, 姬东鸿. 基于SVM和CRF多特征组合的微博情感分析[J]. 计算机应用研究, 2015, 32(4):978-981. Li Tingting, Ji Donghong. Sentiment analysis of micro-blog based on SVM and CRF using various combinations of features[J]. Application Research of Computers, 2015, 32(4):978-981. [5] 周瑛, 刘越, 蔡俊. 基于注意力机制的微博情感分析[J]. 情报理论与实践, 2018, 41(3):89-94. Zhou Ying, Liu Yue, Cai Jun. Sentiment analysis of micro-blogs based on attention mechanism[J]. Information Studies (Theory & Application), 2018, 41(3):89-94. [6] 杜慧, 俞晓明, 刘悦, 等. 融合词性和注意力的卷积神经网络对象级情感分类方法[J]. 模式识别与人工智能, 2018, 31(12):1120-1126. Du Hui, Yu Xiaoming, Liu Yue, et al. CNN with part-of-speech and attention mechanism for targeted sentiment classification[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(12):1120-1126. [7] 孙晓, 彭晓琪, 胡敏, 等. 基于多维扩展特征与深度学习的微博短文本情感分析[J]. 电子与信息学报, 2017, 39(9):2048-2055. Sun Xiao, Peng Xiaoqi, Hu Min, et al. Extended multi-modality features and deep learning based microblog short text sentiment analysis[J]. Journal of Electronics & Information Technology, 2017, 39(9):2048-2055. [8] West R, Paskov H S, Leskovec J, et al. Exploiting social network structure for person-to-person sentiment analysis[J]. Transactions of the Association for Computational Linguistics, 2014, 2:297-310. [9] 黄丹阳, 王菲菲, 杨扬, 等. 基于网络结构与用户内容的动态兴趣识别方法[J]. 北京邮电大学学报, 2018, 41(2):103-108. Huang Danyang, Wang Feifei, Yang Yang, et al. Dynamic interest identification based on social network structure and user generated contents[J]. Journal of Beijing University of Posts and Telecommunications, 2018, 41(2):103-108. [10] Zhu X, Ghahramani Z, Lafferty J D. Semi-supervised learning using gaussian fields and harmonic functions[C]//Proceedings of the 20th International Conference on Machine Learning (ICML-03). Washington, DC:AAAI Press, 2003:912-919. [11] Chapelle O, Zien A. Semi-supervised classification by low density separation[C]//AISTATS.2005:57-64. [12] Kipf T N, Welling M. Semi-supervised classification with graph convolutional networks[EB/OL]. 2016(2016-09-06)[2020-06-25]. https://arxiv.org/abs/1609.02907. [13] Hamilton W L, Ying R, Leskovec J. Inductive representation learning on large graphs[EB/OL]. 2017(2017-06-07)[2020-06-25]. https://arxiv.org/abs/1706.02216. [14] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[EB/OL]. 2017(2017-10-30)[2020-06-25]. https://arxiv.org/abs/1710.10903. [15] Li Q, Han Z, Wu X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Thirty-Second AAAI Conference on Artificial Intelligence. Palo Alto:Association for the Advancement of Artificial Intelligence, 2018:3538-3545. [16] Yang Zhilin, Cohen W W, Salakhutdinov R. Revisiting semi-supervised learning with graph embeddings[EB/OL]. 2016(2016-03-29)[2020-06-25]. https://arxiv.org/abs/1603.08861. [17] Kingma D P, Ba J. Adam:a method for stochastic optimization[EB/OL]. 2014(2014-12-22)[2020-06-25]. https://arxiv.org/abs/1412.6980. [18] Kim Y. Convolutional neural networks for sentence classification[EB/OL]. 2014(2014-08-25)[2020-06-25]. https://arxiv.org/abs/1408.5882. [19] Huang Z, Xu W, Yu K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. 2015(2015-08-09)[2020-06-25]. https://arxiv.org/abs/1508.01991. [20] Joulin A, Grave E, Bojanowski P, et al. Bag of tricks for efficient text classification[EB/OL]. 2016(2016-07-06)[2020-06-25]. https://arxiv.org/abs/1607.01759. [21] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems. Red Hook:Curran Associates Inc, 2017:6000-6010. |