[1] 张严, 李天瑞. 面向评论的方面级情感分析综述[J]. 计算机科学, 2020, 47(6):194-200. Zhang Yan, Li Tianrui. Review of comment-oriented aspect-based sentiment analysis[J]. Computer Science, 2020, 47(6):194-200. [2] Tang Duyu, Qin Bing, Feng Xiaocheng, et al. Effective LSTMs for target dependent sentiment classification[C]//COLING 2016:26th International Conference on Computational Linguistics. Osaka:ACL, 2016:3298-3307. [3] 刘全, 梁斌, 徐进, 等. 一种用于基于方面情感分析的深度分层网络模型[J]. 计算机学报, 2018, 41(12):2637-2652. Liu Quan, Liang Bin, Xu Jin, et al. A deep hierarchical neural network model for aspect-based sentiment analysis[J]. Chinese Journal of Computers, 2018, 41(12):2637-2652. [4] Song Youwei, Wang Jiahai, Jiang Tao, et al. Attention encoder network for targeted sentiment classification[C]//28th International Conterence on Artifical Neural Networks (ICANN). Munich:Springer, 2019:93-103. [5] Rietzler A, Stabinger S, Opitz P, et al. Adapt or get left behind:domain adaptation through BERT language model finetuning for aspect-target sentiment classification[C]//12th Language Resources and Evaluation Conference. Marseille:ELRA, 2020:4933-4941. [6] Zhang Chen, Li Qiuchi, Song Dawei. Aspect-based sentiment classification with aspect-specific graph convolutional networks[C]//Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing. Hong Kong:ACL, 2019:4568-4578. [7] Chen Danqi, Manning C. A fast and accurate dependency parser using neural networks[C]//2014 Conference on Empirical Methods in Natural Language Processing. Doha:ACL, 2014:740-750. [8] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE Computer Society, 2016:770-778. [9] Xu Jingjing, Sun Xu, Zhang Zhiyuan, et al. Understanding and improving layer normalization[C]//Advances in Neural Information Processing Systems. Vancouver:NIPSF, 2019:4381-4391. [10] Pontiki M, Galanis D, Pavlopoulos J, et al. Semeval-2014 task 4:aspect based sentiment analysis[C]//8th International Workshop on Semantic Evaluation. Dublin:ACL&DCU, 2014:27-35. [11] Dong Li, Wei Furu, Tan Chuanqi, et al. Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//52nd Annual Meeting of the Association for Computational Linguistics. Baltimore:ACL, 2014:49-54. [12] Li Lishuang, Liu Yang, Zhou Anqiao. Hierarchical attention based position-aware network for aspect-level sentiment analysis[C]//22nd Conference on Computational Natural Language Learning. Brussels:ACL, 2018:181-189. [13] He Ruidan, Lee W S, Ng H T, et al. An interactive multi-task learning network for end-to-end aspect-based sentiment analysis[C]//57th Annual Meeting of the Association for Computational Linguistics. Florence:ACL, 2019:504-515. [14] Li Zheng, Wei Ying, Zhang Yu, et al. Exploiting coarse-to-fine task transfer for aspect-level sentiment classification[C]//AAAI Conference on Artificial Intelligence. Palo Alto:AAAI, 2019:4253-4260. [15] Tang Jialong, Lu Ziyao, Su Jinsong, et al. Progressive self-supervised attention learning for aspect-level sentiment analysis[C]//57th Annual Meeting of the Association for Computational Linguistics. Florence:ACL, 2019:557-566. |