[1] Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations[J]. Signal Process, 2001(81):2353-2362.
[2] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999(401):788-791.
[3] 张烨. 欠定混合信号的盲分离[D]. 上海:上海大学, 2009.
[4] 张延良. 线性混合盲信源分离的算法研究[D]. 西安:西安电子科技大学, 2011.
[5] 高鹏. 基于单通道盲源分离理论的故障特征提取技术[D]. 西安:长安大学, 2015.
[6] 毋文峰, 陈小虎, 苏勋家, 等. 机械振动源数估计的小波方法[J]. 机械科学与技术, 2011, 30(10):1679-1682. Wu Wenfeng, Chen Xiaohu, Su Xunjia, et al. Wavelet decomposition algorithm for source number estimation of mechanical vibration[J]. Mech Sci and Tech for Aerospace Eng, 2011, 30(10):1679-1682.
[7] Zheng Y Y, Zhang Y L, Liu Y L. The research of pulse wave signal denosing based on EMD and ICA[C]//Third Int Joint Conf Computational Science and Optimization, 2010:482-485.
[8] 李志农, 刘卫兵, 易小兵. 基于局域均值分解的机械故障欠定盲源分离方法研究[J]. 机械工程学报, 2011, 47(7):97-102. Li Zhinong, Liu Weibing, Yi Xiaobing. Underdetermined blind source separation method of machine faults based on local mean decomposition[J]. J Mech Eng, 2011, 47(7):97-102.
[9] 曾现巍, 许凌云, 江晓波. 基于快速EEMD单通道混合信号分离算法的研究[J]. 电子设计工程, 2015, 23(14):20-25. Zeng Xianwei, Xu Lingyun, Jiang Xiaobo. The study of single channel blind separation based on fast EEMD[J]. Electronic Design Eng, 2015, 23(14):20-25.
[10] Huang N E, Wu M L, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proc Royal Society Lond.[s.n.], London:1998:903-993.
[11] 袁梅, 牛奔, 董韶鹏, 等. 伪多源采样复域FastICA冲击定位算法[J]. 北京航空航天大学学报, 2016, 42(2):243-250. Yuan Mei, Niu Ben, Dong Saopeng, et al. Pseudo-multi-source-sampling complex domain FastICA for impact location[J]. J Beijing University of Aeronautics and Astronautics, 2016, 42(2):243-250.
[12] Zhang Z, Zhang X D. A new mixing matrix identification algorithm for underdetermined blind source separation[C]//Int Conf Signal Proc. Beijing:[s.n.], 2008:268-271.
[13] 陈晓军. 欠定条件下混合信号盲分离算法研究[D]. 成都:电子科技大学, 2010.
[14] Xie S L, Yang L, Yang J M, et al. Time-frequency approach to underdetermined blind source separation[J]. IEEE Trans Neural Networks and Learning Systems, 2012, 23(2):306-316.
[15] Georgiev P, Theis F, Cichocki A. Sparse component analysis and blind source separation of underdetermined mixtures[J]. IEEE Trans Neural Networks, 2005, 16(4):992-996.
[16] Jourjine A, Rickard S, Yilmaz O. Blind separation of disjoint orthogonal signals:demixing n Sources from 2 mixtures[J]. IEEE Int Conf Acoust, Speech, Signal Process, 2000(5):2985-2988.
[17] Abrard F, Deville Y. A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources[J]. Signal Process, 2005, 85(7):1389-1403.
[18] Li Y, Amari S, Cichocki A, et al. Underdetermined blind source separation based on sparse representation[J]. IEEE Trans Signal Process, 2006, 54(2):423-437.
[19] Kim S G, Yoo C D. Underdetermined blind source separation based on subspace representation[J]. IEEE Trans Signal Process, 2009, 57(7):2604-2614.
[20] Reju V G, Koh S N, Soon I Y. An algorithm for mixing matrix estimation in instantaneous blind source separation[J]. Signal Process, 2009, 89(9):1762-1773.
[21] Li H, Shen Y H, Wang J G, et al. Estimation of the complex-valued mixing matrix by single-source-points detection with less sensors than sources[J]. Trans Emerging Tel Tech, 2012(23):137-147.
[22] Guo J, Zeng X, She Z. Blind source separation based on high-resolution time-frequency distributions[J]. Computer and Electrical Engineering, 2012, 38(1):175-184.
[23] Xu J D, Yu X C, Hu D, et al. A fast mixing matrix estimation method in the wavelet domain[J]. Signal Process, 2014(95):58-66.
[24] Zhen L L, Peng D Z, Yi Z, et al. Underdetermined blind source separation using sparse coding[J]. IEEE Trans Neural Networks and Learning Systems, 2017, 28(12):3102-3108.
[25] Li Y B, Nie W, Ye F, et al. A mixing matrix estimation algorithm for underdetermined blind source separation[J]. Circuits Syst Signal Process, 2016(35):3367-3379.
[26] 毕晓君, 宫汝江. 基于混合聚类和网格密度的欠定盲矩阵估计[J]. 系统工程与电子技术, 2012, 34(3):614-618. Bi Xiaojun, Gong Rujiang. Underdetermined blind mixing matrix estimation algorithm based on mixing clustering and mesh density[J]. Syst Eng and Electronics, 2012, 34(3):614-618.
[27] 袁方, 周志勇, 宋鑫. 初始聚类中心优化的K-means算法[J]. 计算机工程, 2007, 33(3):65-66. Yuan Fang, Zhou Zhiyong, Song Xin. K-means clustering algorithm with meliorated initial center[J]. Computer Eng, 2007, 33(3):65-66.
[28] 谢娟英, 郭文娟, 谢维信, 等. 基于样本空间分布密度的初始聚类中心优化K-均值算法[J]. 计算机应用研究, 2012, 9(3):888-892. Xie Juanying, Guo Wenjuan, Xie Weixin. K-means clustering algorithm based on optimal initial centers related to pattern distribution of samples in space[J]. Application Research of Computers, 2012, 9(3):888-892.
[29] 付卫红, 马丽芬, 李爱丽. 基于改进K-均值聚类的欠定混合矩阵盲估计[J]. 系统工程与电子技术, 2014, 36(11):2143-2148. Fu Weihong, Ma Lifen, Li Aili. Blind estimation of underdetermined mixing matrix based on improved K-means clustering[J]. Syst Eng and Electronics, 2014, 36(11):2143-2148.
[30] Aissa-El-Bey A, Linh-Trung N, Abed-Meraim K, et al. Underdetermined blind separation of nondisjoint sources in the time-frequency domain[J]. IEEE Trans Signal Process, 2007, 55(3):897-907.
[31] Peng D Z, Xiang Y. Underdetermined blind source separation based on relaxed sparsity condition of sources[J]. IEEE Trans Signal Process, 2009, 57(2):809-814.
[32] Jourjine A, Rickard S, Yilmaz O. Blind separation of disjoint orthogonal signals:demixing N sources from 2 mixtures[C]//Proc IEEE Int Conf Acoustics, Speech, and Signal Process, Istanbul:[s.n.], 2000:2985-2988.
[33] Yilmaz O, Rickard S. Blind separation of speech mixtures via time-frequency masking[J]. IEEE Trans Signal Process, 2004, 52(7):1830-1847.
[34] Cobos M, Lopez J J. Maximum a posteriori binary mask estimation for underdetermined source separation using smoothed posteriors[J]. IEEE Trans Audio, Speech and Language Process, 2012, 20(7):2059-2064.
[35] Araki S, Sawada H, Mukai R, et al. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors[J]. Signal Process, 2007, 87(8):1833-1847.
[36] Zibulevsky M, Pearlmutter B A. Blind source separation by sparse decomposition in a signal dictionary[J]. Neural Comput, 2001, 13(4):863-882.
[37] Theis F J, Lang W E, Puntonet C G. A geometric algorithm for overcomplete linear ICA[J]. Neural Comput, 2004:381-398.
[38] Xiao M, Xie S L, Fu Y L. A statistically sparse decomposition principle for underdetermined blind source separation[C]//Int Sym Intelligent Signal Process and Comm Syst. Hong Kong:[s.n.], 2005:165-168.
[39] 赵敏. 盲信号分离的原理及其关键问题的研究[D]. 广州:华南理工大学, 2010.
[40] Donoho D L. Compressed sensing[J]. IEEE Trans Information Theory, 2006, 52(4):1289-1306.
[41] Candes E J. Compressive sampling[C]//Proc Int Congress of Mathematicians. Madrid:[s.n.], 2006:1433-1452.
[42] Candes E J, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Trans Info Theory, 2006, 52(2):489-509.
[43] 严新. 欠定盲源分离中源信号恢复算法研究[D]. 西安:西安电子科技大学, 2014.
[44] Blumensath T, Davies M. Compressed sensing and source separation[C]//Int Conf Independent Component Analysis and Blind Source Separation. Berlin Heidelberg:Springer, 2007:341-348.
[45] Xu T, Wang W. A compressed sensing approach for underdetermined blind audio source separation with sparse representation[C]//IEEE/SP 15th Workshop on Statis Signal Process. Cardiff:[s.n.], 2009:493-496.
[46] Blumensath T, Davies M E. Gradient pursuits[J]. IEEE Trans Signal Process, 2008, 56(6):2370-2382.
[47] Lewicki M S, Sejnowski T J. Learning overcomplete representations[J]. Neural Comput, 2000, 12(2):337-365.
[48] Davies M, Mitianoudis N. A simple mixture model for sparse overcomplete ICA[J]. IEEE Proc Vision, Image, and Signal Process, 2004, 151(1):35-43.
[49] Snoussi H, Idier J. Bayesian blind separation of generalized hyperbolic processes in noisy and under determinate mixtures[J]. IEEE Trans Signal Process, 2006, 54(9):3257-3269.
[50] 张良俊. 欠定盲源分离算法及其应用研究[D]. 武汉:武汉理工大学, 2015. |