[1] 潘成, 张和生. 无线传感器网络快速数据收集的聚集调度方法[J]. 北京邮电大学学报, 2016, 39(4):87-91. Pan Cheng, Zhang Hesheng. Fast data collection of wireless sensor networks by aggregation scheduling[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(4):87-91.
[2] Amjad M, Afzal M K, Umer T, et al. QoS-aware and heterogeneously clustered routing protocol for wireless sensor networks[J]. IEEE Access, 2017, 39(99):1-12.
[3] 郭志强, 王沁, 万亚东, 等. 基于综合性评估的无线链路质量分类预测机制[J]. 计算机研究与发展, 2013, 50(6):1227-1238. Guo Zhiqiang, Wang Qin, Wan Yadong, et al. A classification prediction mechanism based on comprehensive assessment for wireless link quality[J]. Journal of Computer Research and Development, 2013, 50(6):1227-1238.
[4] Marinca D, Minet P. On-line learning and prediction of link quality in wireless sensor networks[C]//2014 IEEE Global Communications Conference (GLOBECOM). Austin:IEEE Press, 2014:1245-1251.
[5] 舒坚, 汤津, 刘琳岚, 等. 基于模糊支持向量回归机的WSNs链路质量预测[J]. 计算机研究与发展, 2015, 52(8):1842-1851. Shu Jian, Tang Jin, Liu Linlan, et al. Fuzzy support vector regression-based link quality prediction model for wireless sensor networks[J]. Journal of Computer Research and Development, 2015, 52(8):1842-1851.
[6] Bildea A, Alphand O, Rousseau F, et al. Link quality estimation with the Gibert-Elliot model for wireless sensor networks[C]//2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (2015 PIMRC). Hong Kong:IEEE Press, 2015:2049-2054.
[7] Shu Jian, Tao Juan, Liu Linlan, et al. CCI-based link quality estimation mechanism for wireless sensor networks under non-perceived packet loss[J]. The Journal of China Universities of Posts and Telecommunications, 2013, 20(1):1-10.
[8] 赵斌, 何泾沙, 张伊璇, 等. 访问控制中基于粗糙集的授权规则指示发现[J]. 北京邮电大学学报, 2016, 39(2):48-52. Zhao Bin, He Jingsha, Zhang Yixuan, et al. Knowledge discovery of authorization rule based on rough set in trust based access control[J]. Journal of Beijing University of Posts and Telecommunications, 2016, 39(2):48-52.
[9] Eberts M, Steinwart I. Optimal learning rates for least squares SVMs using Gaussian kernels[C]//2011 Annual Conference on Neural Information Processing Systems (2011NIPS). Granada:Advances in Neural Information Processing Systems, 2011:1539-1547.
[10] Ning Kefeng, Liu Min, Dong Mingyu, et al. Robust LS-SVR based on variational Bayesian and its application[C]//2014 International Joint Conference on Neural Networks (IJCNN). Beijing:IEEE Press, 2014:2920-2926.
[11] Tang Yizhou, Zhou Jiawen. The performance of PSO-SVM in inflation forecasting[C]//201512th International Conference on Service Systems and Service Management (ICSSSM). Guangzhou:IEEE Press, 2015:1-4. |