[1] 张东霞, 苗新, 刘丽平, 等. 智能电网大数据技术发展研究[J]. 中国电机工程学报, 2015(1):2-12. Zhang Dongxia, Miao Xin, Liu Liping, et al. Research on development strategy for smart grid big data[J]. Proceedings of the CSEE, 2015, 35(1):2-11.
[2] 薛禹胜, 赖业宁. 大能源思维与大数据思维的融合(一)大数据与电力大数据[J]. 电力系统自动化, 2016, 40(1):1-8. Xue Yusheng, Lai Yening. Integration of macro energy thinking and big data thinking part one applications and explorations[J]. Automation of Electric Power Systems, 2016, 40(1):1-8.
[3] 武同心, 吕晓祥, 王建全. Duhamel数值积分算法在电力系统暂态稳定分析中的应用[J]. 机电工程, 2013, 30(6):741-745. Wu Tongxin, Lü Xiaoxiang, Wang Jianquan. Application of duhamel integrals in power system transient stability analysis[J]. Mechanical & Electrical Engineering Magazine, 2013, 30(6):741-745.
[4] 刘怀东, 张江红, 刘沛龙, 等. 基于改进解析法的小范围动态安全域搜索方法[J]. 电力自动化设备, 2012, 32(2):29-33. Liu Huaidong, Zhang Jianghong, Liu Peilong, et al. Small-range search of DSR based on improved analytical method[J]. Electric Power Automation Equipment, 2012, 32(2):29-33.
[5] 戴远航, 陈磊, 张玮灵, 等. 基于多支持向量机综合的电力系统暂态稳定评估[J]. 中国电机工程学报, 2016, 36(5):1173-1180. Dai Yuanhang, Chen Lei, Zhang Weiling, et al. Power system transient stability assessment based on multi-support vector machines[J]. Proceedings of the CSEE, 2016, 36(5):1173-1180.
[6] Ji L, Wu J, Zhou Y, et al. Using trajectory clusters to define the most relevant features for transient stability prediction based on machine learning method[J]. Energies, 2016, 9(11):898.
[7] Wang S, Lu S, Zhou N, et al. Dynamic-feature extraction, attribution, and reconstruction (DEAR) method for power system model reduction[J]. IEEE Transactions on Power Systems, 2014, 29(5):2049-2059.
[8] He Y, Mendis G J, Wei J. Real-time detection of false data injection attacks in smart grid:a deep learning-based intelligent mechanism[J]. IEEE Transactions on Smart Grid, 2017, 8(5):2505-2516.
[9] Ma J, Zhang J, Xiao L, et al. Classification of power quality disturbances via deep learning[J]. IETE Technical Review, 2016:1-8.
[10] Jetcheva J G, Majidpour M, Chen W P. Neural network model ensembles for building-level electricity load forecasts[J]. Energy & Buildings, 2014(84):214-223.
[11] Kuznetsova E, Li Y F, Ruiz C, et al. Reinforcement learning for microgrid energy management[J]. Energy, 2013, 59(59):133-146.
[12] Xu J, Xiang L, Liu Q, et al. Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer histopathology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(1):119.
[13] Othman E, Bazi Y, Alajlan N, et al. Using convolutional features and a sparse autoencoder for land-use scene classification[J]. International Journal of Remote Sensing, 2016, 37(10):2149-2167. |