[1] Arnes A, Valeur F. Using hidden Markov models to evaluate the risk of intrusions//Proceedings of the RAID’06. Hamburg: , 2006: 145-164. [2] Gao F, Sun J, Wei Z. The prediction role of hidden Markov model in intrusion detection[J]. Electrical and Computer Engineering, 2003(2): 893-896. [3] Haslum Kjetil, Arnes A. Multisensor real time risk assessment using continuous time hidden Markov models//Proceedings of the International Conference on Computational Intelligence and Security (CIS). Guangzhou: , 2006: 694-703. [4] Dirk Ourston, Sam Matzner, William Stump, et al. Applications of hidden Markov models to detecting multi-stage network attacks//Proceedings of the 36th HawaiiInternational Conference on System Sciences. Hawaii: , 2003: 1-10. [5] 李伟明, 雷杰, 董静, 等. 一种优化的实时网络安全风险量化方法[J]. 计算机学报, 2009, 32(4): 793-804. Li Weiming, Lei Jie, Dong Jing, et al. An optimized method for real time network security quantification[J]. Chinese Journal of Computers, 2009, 32(4): 793-804. [6] 孙宏伟, 田新广, 邹涛, 等. 基于隐马尔可夫模型的IDS程序行为异常检测[J]. 国防科技大学学报, 2003, 25(5): 63-67. Sun Hongwei, Tian Xinguang, Zou Tao, et al. Anomaly detection of the program behaviors for IDS based on hidden Markov models[J]. Journal of National University of Defense Technology, 2003, 25(5): 63-67. [7] 张永铮, 方滨兴, 迟悦, 等. 网络风险评估中网络节点关联性的研究[J]. 计算机学报, 2007, 30(2): 234-240. Zhang Yongzheng, Fang Binxing, Chi Yue, et al. Research on network node correlation in network risk assessment[J]. Chinese Journal of Computers, 2007, 30(2): 234-240. [8] 陈天平, 乔向东, 郑连清, 等. 图论在网络安全威胁态势分析中的应用[J]. 北京邮电大学学报, 2009, 32(1): 113-117. Chen Tianping, Qiao Xiangdong, Zheng Lianqing, et al. Application of graph theory in threat situation analysis of network security[J]. Journal of Beijing University of Posts and Telecommunications, 2009, 32(1): 113-117. |