[1] Wang H, Fan W, Yu P S, et al. Mining concept-drifting data stream using ensemble classifiers// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, D. C: ACM, 2003: 226-235. [2] Domingos P, Hulten G. Mining high-speed data streams//Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Boston: ACM, 2000: 71-80. [3] Street W N, Kim Y S. A streaming ensemble algorithm for large-scale classification//Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2001: 377-382. [4] Chu F, Zaniolo C. Fast and light boosting for adaptive mining of data streams//Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Sydney : Springer Verlag, 2004: 282-292. [5] Wei Fan. Systematicdata selection to mine concept-drifting data streams//Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle: ACM, 2004: 128-137. [6] Zhang Yi, Jin Xiaoming. An automatic construction and organization strategy for ensemble learing on data streams[J]. ACM SIGMOD Record, 2006, 35(3): 28-33. [7] 孙悦, 毛国军, 刘旭, 等. 基于多分类器的数据流中的概念漂移挖掘[J]. 自动化学报, 2008, 34(1): 93-96. Sun Yue, Mao Guojun, Liu Xu, et al. Ming concept drift from data streams based on multi-classifiers[J]. ACTA Automatica Sinica, 2008, 34(1): 93-96. [8] Tumer K, Ghosh J. Analysis of decision boundaries in linearly combined neural classifiers[J]. Pattern Recognition, 1996, 29(2): 341-348. [9] Tumer K, Ghosh J. Error correlation and error reduction in ensemble classifiers[J]. Connection Science, 1996, 8(3-4): 385-404. [10] 付忠良. 关于AdaBoost有效性分析[J]. 计算机研究与发展, 2008, 45(10): 1747-1755. Fu Zhongliang. Effectiveness analysis of adaboost[J]. Journal of Computer Research and Development, 2008, 45(10): 1747-1755. [11] 周志华, 王珏. 机器学习机器应用2007[M]. 北京: 清华大学出版社, 2007. |