[1] Han Jiawei, Micheline Kamber, Pei Jian. Data mining:concepts and techniques[M]. 3rd edition. Burlington, Massachusetts:Morgan Kaufmann, 2011:444-476.
[2] Martin Ester, Hans-Peter Kriegel, Jorg Sander, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of KDD. Portland, USA:AAAI Press, 1996:226-231.
[3] Ankerst M, Breunig M, Kriegel H P. OPTICS:ordering points to identify the clustering structure[C]//Acm Sigmod Record. New York, NY, USA:Philadelphia, PA, 1999:49-60.
[4] Hinneburg A, Keim D A. An efficient approach to clustering in large multimedia databases with Noise[C]//Proceedings of the International Conference on Knowledge Discovery and Data Mining (KDD'98). 1998:58-65.
[5] Wang Wei, Yang Jiong, Muntz R. STING:A statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd International Conference on Very Large Data Bases. San Francisco, CA. USA:Morgan Kaufmann Publishers Inc:1997:186-195.
[6] Agrawal R, Gehrke J, Gunopulos D, et al. Automatic subspace clustering of high dimensional data for data mining application[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. ACM:New York, NY, USA. 1998:94-105.
[7] Sheikholeslami G, Chatterjee S, Zhang Aidong. WaveCluster:a multi-resolution clustering approach for very large spatial databases[C]//Proceedings of the 24th VLDB Conference. Morgan Kaufmann:New York, USA. 1998:428-439.
[8] Zheng Yu, Xie Xing, Ma Weiying. GeoLife:A collaborative social networking service among User, location and trajectory[J]. IEEE Data Engineering Bulletin, 2010, 33(2):32-40. |