[1] WAGNER R S, ELLIS W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters, 1964, 4(5):89-90. [2] HARAGUCHI K, KATSUYAMA T, HIRUMA K, et al. GaAs p-n junction formed in quantum wire crystals\[J]. Applied Physics Letters, 1992, 60(6):745-747. [3] REN X M, HUANG H, DUBROVSKII V G, et al. Experimental and theoretical investigations on the phase purity of GaAs zincblende nanowires\[J]. Semiconductor Science and Technology, 2011, 26(1):1014034.1-1014034.8. [4] GIL E, DUBROVSKII V G, AVIT G, et al. Record pure zincblende phase in GaAs nanowires down to 5nm in radius\[J]. Nano Letters, 2014, 14(7):3938-3944. [5] HUANG H, REN X M, YE X, et al. Growth of stacking-faults-free zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layers\[J]. Nano Letters, 2010, 10(1):64-68. [6] JAFFAL A, REGRENY P, CHAUVIN N, et al. Density-controlled growth of vertical InP nanowires on Si (111) substrates\[J/OL]. Nanotechnology, 2020, 31(35)[2021-09-01]. https://iopscience.iop.org/article/10.1088/1361-6528/ab9475/meta. [7] DUBROVSKII V G, REZNIK R R, ILKIV I V, et al. Low-temperature growth of Au-catalyzed InAs nanowires:experiment and theory\[J/OL]. Physica Status Solidi-Rapid Research Letters, 2022, 16(1)[2022-02-01]. https://onlinelibrary.wiley.com/doi/full/10.1002/pssr.202100401. [8] ZHANG Y Y, SANCHEZ A M, SUN Y, et al. Influence of droplet size on the growth of self-catalyzed ternary GaAsP nanowires\[J]. Nano Letters, 2016, 16(2):1237-1243. [9] PANCIERA F, BARAISSOV Z, PATRIARCHE G, et al. Phase selection in self-catalyzed GaAs nanowires\[J]. Nano Letters, 2020, 20(3):1669-1675. [10] YAN X, ZHANG X, LI J S, et al. Self-catalyzed growth of pure zinc blende 110 InP nanowires\[J/OL]. Applied Physics Letters, 2015, 107(2)[2021-09-01]. https://pubsacs.53yu.com/. [11] ANANDANA D, NAGARAJANA V, KAKKERLA R K, et al. Crystal phase control in self-catalyzed InSb nanowires using basic growth parameter V/Ⅲ ratio\[J]. Journal of Crystal Growth, 2019, 522:30-36. [12] HAMANO T, HIRAYAMA H, AOYAGI Y. New technique for fabrication of two-dimensional photonic bandgap crystals by selective epitaxy\[J]. Japanese Journal of Applied Physics, 1997, 36(3A):L286-L288. [13] GRÉ G G, ZEGHOUANE M, GOOSNEY C, et al. Selective area growth by hydride vapor phase epitaxy and optical properties of InAs nanowire arrays\[J]. Crystal Growth&Design, 2021, 21(9):5158-5163. [14] WANG N, WONG W W, YUAN X, et al. Understan-ding shape evolution and phase transition in InP nanostructures grown by selective area epitaxy\[J/OL]. Small, 2021, 17(21)[2021-09-01]. https://onlinelibrary.wiley.com/doi/full/10.1002/smll.202100263. [15] BEZNASYUK D V, ROBIN E, HERTOG M D, et al. Dislocation-free axial InAs-on-GaAs nanowires on silicon\[J/OL]. Nanotechnology, 2017, 28(36)[2021-09-01]. https://iopscience.iop.org/article/10.1088/1361-6528/aa7d40/meta. [16] ALGRA R E, VERHEIJEN M A, BORGSTRÖM M T, et al. Twinning superlattices in indium phosphide nanowires\[J]. Nature, 2008, 456(7220):369-372. [17] GOKTAS N I, SOKOLOVSKII A, DUBROVSKII V G, et al. Formation mechanism of twinning superlattices in doped GaAs nanowires\[J]. Nano Letters, 2020,(5), 3344-3351. [18] XUE M F, LI M, HUANG Y S, et al. Observation and ultrafast dynamics of inter-sub-band transition inInAs twinning superlattice nanowires\[J/OL]. Advanced Materials, 2020, 32(40)[2021-09-01]. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202004120. [19] JURCZAK P, ZHANG Y Y, WU J, et al. Ten-fold enhancement of InAs nanowire photoluminescence emission with an InP passivation layer\[J]. Nano Letters, 2017, 17(6):3629-3633. [20] YAN X, ZHANG X, LI J, et al. Fabrication and optical properties of GaAs/InGaAs/GaAs nanowire core-multishell quantum well heterostructures\[J]. Nanoscale, 2015, 7(3):1110-1115. [21] LI H, TANG J, PANG G, et al. Optical characteristics of GaAs/GaAsSb/GaAs coaxial single quantum-well nanowires with different Sb components\[J]. RSC Advances, 2019, 9(65):38114-38118. [22] PANEV N, PERSSON A I, SKÖLD N, et al. Sharp exciton emission from single InAs quantum dots in GaAs nanowires\[J]. Applied Physics Letters, 2003, 83(11):2238-2240. [23] BORAS G, YU X, FONSEKA H A, et al. Self-catalyzed AlGaAs nanowires and AlGaAs/GaAs nanowire-quantum dots on Si substrates\[J]. The Journal of Physical Chemistry C, 2021, 125(26):14338-14347. [24] NORTHEAST D B, DALACU D, WEBER J F, et al. Optical fibre-based single photon source using InAsP quantum dot nanowires and gradient-index lens collection\[J/OL]. Scientific Reports, 2021, 11(1)[2022-02-01]. https://wwwnature.53yu.com/articles/s41598-021-02287-y. [25] UCCELLI E, ARBIOL J, MORANTE J R, et al. InAs quantum dot arrays decorating the facets of GaAs nanowires\[J]. ACS Nano, 2010, 4(10):5985-5993. [26] YAN X, ZHANG X, REN X, et al. Growth of InAs quantum dots on GaAs nanowires by metal organic chemi-cal vapor deposition\[J]. Nano Letters, 2011, 11(9):3941-3945. [27] YAN X, ZHANG X, REN X, et al. Formation mechanism and optical properties of InAs quantum dots on the surface of GaAs nanowires\[J]. Nano Letters, 2012, 12(4):1851-1856. [28] HUANG M H, MAO S, FEICK H, et al. Room-tempera-ture ultraviolet nanowire nanolasers\[J]. Science, 2001, 292(5523):1897-1899. [29] SAXENA D, MOKKAPATI S, PARKINSON P, et al. Optically pumped room-temperature GaAs nanowire lasers\[J]. Nature Photonics, 2013, 7(12):963-968. [30] MAYER B, RUDOLPH D, SCHNELL J, et al. Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature\[J/OL]. Nature Communications, 2013, 4(1)[2021-09-01]. https://wwwnature.53yu.com/articles/ncomms3931. [31] WEI W, LIU Y, ZHANG X, et al. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers\[J/OL]. Applied Physics Letters, 2014, 104(22)[2021-09-01]. https://aipscitation.53yu.com/doi/abs/10.1063/1.4881266. [32] SUMIKURA H, ZHANG G, TAKIGUCHI M, et al. Mid-infrared lasing of single wurtzite InAs nanowire\[J]. Nano Letters, 2019, 19(11):8059-8065. [33] SAXENA D, JIANG N, YUAN X, et al. Design and room-temperature operation of GaAs/AlGaAs multiple quantum well nanowire lasers\[J]. Nano Letters, 2016, 16(8):5080-5086. [34] STETTNER T, ZIMMERMANN P, LOITSCH B, et al. Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control\[J/OL]. Applied Physics Letters, 2016, 108(1)[2021-09-01]. https://aipscitation.53yu.com/doi/abs/10.1063/1.4939549. [35] YAN X, WEI W, TANG F, et al. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser\[J/OL]. Applied Physics Letters, 2017, 110(6)[2021-09-01]. https://aipscitation.53yu.com/doi/abs/10.1063/1.4975780. [36] ZHANG G, TAKIGUCHI M, TATENO K, et al. Telecom-band lasing in single InP/InAs heterostructure nanowires at room temperature\[J/OL]. Science Advances, 2019, 5(2)[2021-09-01]. https://www.science.org/doi/full/10.1126/sciadv.aat8896. [37] SOCI C, ZHANG A, Bao X-Y, et al. Nanowire photodetectors\[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(3):1430-1449. [38] GIBSON S J, KASTEREN B, TEKCAN B, et al. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection\[J]. Nature Nanotechnology, 2019, 14(5):473-479. [39] WANG X, PAN D, SUN M, et al. High-performance room-temperature UV-IR photodetector based on the InAs nanosheet and its wavelength-and intensity-depen-dent negative photoconductivity\[J]. ACS Applied Mate-rials&Interfacesv, 2021, 13(22):26187-26195. [40] SHAFA M, WU D, CHEN X, et al. Flexible infrared photodetector based on indium antimonidenanowire arrays\[J/OL]. Nanotechnology, 2021, 32(27)[2021-09-01]. https://iopscience.iop.org/article/10.1088/1361-6528/abe965/meta. [41] GUO N, HU W, LIAO L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature\[J]. Advanced Materials, 2014, 26(48):8203-8209. [42] LI J, YAN X, SUN F, et al. Anomalous photoconductive behavior of a single InAs nanowire photodetector\[J/OL]. Applied Physics Letters, 2015, 107(26)[2021-09-01]. https://aipscitation.53yu.com/doi/abs/10.1063/1.4938752. [43] LI B, WEI W, YAN X, et al. Mimicking synaptic functionality with an InAs nanowire phototransistor\[J/OL]. Nanotechnology, 2018, 29(46)[2021-09-01]. https://iopscience.iop.org/article/10.1088/1361-6528/aadf63/meta. [44] YAO X, ZHANG X, SUN Q, et al. Anomalous photoelectrical properties through strain engineering based on a single bent InAsSb nanowire\[J]. ACS Applied Materials&Interfaces, 2021, 13(4):5691-5698. [45] WALLENTIN J, ANTTU N, ASOLI D, et al. InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit\[J]. Science, 2013, 339(6123):1057-1060. [46] RAJ V, VORA K, FU L, et al. High-efficiency solar cells from extremely low minority varrier lifetime substrates using radial junction nanowire srchitecture\[J]. ACS Nano, 2019, 13(10):12015-12023. [47] KROGSTRUP P, JØRGENSEN H I, HEISS M, et al. Single-nanowire solar cells beyond the Shockley-Queisser limit\[J]. Nature Photonics, 2013, 7(4):306-310. [48] HAN N, YANG Z, WANG F, et al. High-performance GaAs nanowire solar cells for flexible and transparent photovoltaics\[J]. ACS Applied Materials&Interfaces, 2015, 7(36):20454-20459. [49] LUO Y, YAN X, ZHANG X, et al. Enhanced perfor-mance of graphene/GaAs nanowire photoelectric conversion devices by improving the Schottky barrier height\[J/OL]. Journal of Vacuum Science&Technology B, 2019, 37(5)[2021-09-01]. https://avs.scitation.org/doi/abs/10.1116/1.5114910. |