[1] Zhang K, Mao Y, Leng S, et al. Mobile-edge computing for vehicular networks:a promising network paradigm with predictive off-loading[J]. IEEE Vehicular Technology Magazine, 2017, 12(2):36-44.
[2] Morency C, Trépanier M. Characterizing parking spaces using travel survey data[M]. Montreal:Cirrelt, 2008:24.
[3] Liu N, Liu M, Lou W, et al. PVA in VANETs:stopped cars are not silent[C]//INFOCOM 2011. Shanghai:[s.n.], 2011:431-435.
[4] Malandrino F, Casetti C, Chiasserini C, et al. The role of parked cars in content downloading for vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2014, 63(9):4606-4617.
[5] Government P F. Parking lot dataset[EB/OL]. (2010-03-10)[2018-09-27]. https://www.data.act.gov.au/Transport/SmartParking-Occupancy/fspr-n6cz/data.
[6] Deng R, Lu R, Lai C, et al. Towards power consumption-delay tradeoff by workload allocation in cloud-fog computing[C]//ICC 2015. London:[s. n.], 2015:3909-3914.
[7] Yu R, Ding J, Maharjan S, et al. Decentralized and optimal resource cooperation in geo-distributed mobile cloud computing[J]. IEEE Transactions on Emerging Topics in Computing, 2015, 6(1):72-84.
[8] Hou Z, Chen H, Li Y, et al. Incentive mechanism design for wireless energy harvesting-based internet of things[J]. IEEE Internet of Things Journal, 2018, 5(4):2620-2632.
[9] Zhang B, Jiang C, Yu J, et al. A contract game for direct energy trading in smart grid[J]. IEEE Transactions on Smart Grid, 2018, 9(4):2873-2884.
[10] Wang Y, Sheng M, Wang X, et al. Mobile-edge computing:partial computation offloading using dynamic voltage scaling[J]. IEEE Transactions on Communications, 2016, 64(10):4268-4282. |