[1] 陈湘军, 阮雅端, 陈启美, 等. 车辆图像稀疏特征表示及其监控视频应用[J]. 北京邮电大学学报, 2016(S1):81-86. Chen Xiangjun, Ruan Yaduan, Chen Qimei, et al. Sparse feature representation of vehicle images and its surveillance video application[J]. Journal of Beijing University of Posts and Telecommunications, 2016(S1):81-86. [2] Zhang Nan, Wang Feiyue, Zhu Fenghua, et al. DynaCAS:computational experiments and decision support for ITS[J]. IEEE Intelligent Systems, 2008, 23(6):19-23. [3] Sun Bin, Cheng Wei, Goswami Prashant, et al. Short-term traffic forecasting using self-adjusting k-nearest neighbours[J]. IET Intelligent Transport Systems, 2017, 12(1):41-48. [4] Castro-Neto M, Jeong Y S, Jeong M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications, 2009, 36(3):6164-6173. [5] Schmidhuber J. Deep learning in neural networks:an overview[J]. Neural Networks, 2015, 61:85-117. [6] Huang Wenhao, Song Guojie, Hong Haikun, et al. Deep architecture for traffic flow prediction:deep belief networks with multitask learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(5):2191-2201. [7] Lu Wenqi, Luo Dongyu, Yan Menghua. A model of traffic accident prediction based on convolutional neural network[C]//2017 2nd IEEE International Conference on Intelligent Transportation Engineering (ICITE). Singapore:IEEE, 2017:198-202. [8] Zhao Zheng, Chen Weihai, Wu Xingming, et al. LSTM network:a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems, 2017, 11(2):68-75. [9] Bates J M, Granger C W J. The combination of forecasts[J]. Journal of the Operational Research Society, 1969, 20(4):451-468. [10] Shi Xingjian, Chen Zhourong, Wang Hao, et al. Convolutional LSTM network:a machine learning approach for precipitation nowcasting[C]//Advances in Neural Information Processing Systems. Montreal:Neural Information Processing Systems Foundation, 2015:802-810. [11] 段宗涛, 张凯, 杨云, 等. 基于深度CNN-LSTM-ResNet组合模型的出租车需求预测[J]. 交通运输系统工程与信息, 2018, 18(4):215-223. Duan Zongtao, Zhang Kai, Yang Yun, et al. Taxi demand prediction based on deep CNN-LSTM-ResNet combined model[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(4):215-223. [12] Wu Yuankai, Tan Huachun, Qin Lingqiao, et al. A hybrid deep learning based traffic flow prediction method and its understanding[J]. Transportation Research Part C:Emerging Technologies, 2018, 90:166-180. [13] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE Computer Society, 2016:770-778. |