[1] Hu Y C, Patel M, Sabella D, et al. Mobile edge computing-a key technology towards 5G[EB/OL]. Sophia Antipolis: ETSI, 2015[2018-08-08]. https: //www. etsi. org/images/files/ETSIWhitePapers/etsi_wp11_mec_a_key_technology_towards_5g. pdf.
[2] 3GPP. 3GPP TS 23. 501—2018, System architecture for the 5g system (Release 15)[S]. Sophia Antipolis: 3rd Generation Partnership Project, 2018: 127.
[3] Markakis E K, Karras K, Sideris A, et al. Computing, caching, and communication at the edge: the cornerstone for building a versatile 5G ecosystem[J]. IEEE Communications Magazine, 2017, 55(11): 152-157.
[4] Satyanarayanan M, Bahl V, Caceres R, et al. The case for vm-based cloudlets in mobile computing[J]. IEEE Pervasive Computing, 2009, 8(4): 14-23.
[5] Lertsinsrubtavee A, Ali A, Molina-Jimenez C, et al. PiCasso: a lightweight edge computing platform[C]//2017 IEEE 6th International Conference on Cloud Networking (CloudNet). Prague: IEEE Press, 2017: 1-7.
[6] Huang A, Nikaein N, Stenbock T, et al. Low latency MEC framework for SDN-based LTE/LTE-A networks[C]//2017 IEEE International Conference on Communications (ICC). Paris: IEEE Press, 2017: 1-6.
[7] Lee S Q, Kim J. Local breakout of mobile access network traffic by mobile edge computing[C]//2016 International Conference on Information and Communication Technology Convergence (ICTC). Jeju: IEEE Press, 2016: 741-743.
[8] Fielding, Thomas R. Architectural styles and the design of network-based software architectures [D]. Irvine: University of California, 2000. |