[1] Ha J, Seok S, Lee J S. A precise ranking method for outlier detection[J]. Information Sciences, 2015, 324:88-107.
[2] 左青云, 陈鸣, 王秀磊, 等. 一种基于SDN的在线流量异常检测方法[J]. 西安电子科技大学学报, 2015, 42(1):155-160. Zuo Qingyun, Chen ming, Wang Xiulei, et al. Online traffic anomaly detection method for SDN[J]. Journal of Xidian University, 2015, 42(1):155-160.
[3] 刘敬, 谷利泽, 钮心忻, 等. 基于单分类支持向量机和主动学习的网络异常检测研究[J]. 通信学报, 2015, 36(11):136-146. Liu Jing, Gu Lize, Niu Xinxin, et al. Research on network anomaly detection based on one-class SVM and active learning[J]. Journal on Communications, 2015, 36(11):136-146.
[4] Ramaswamy S, Rastogi R, Shim K. Efficient algorithms for mining outliers from large data sets[J]. ACM SIGMOD Record, 2000, 29(2):427-438.
[5] Breunig M M, Kriegel H P, Ng R T, et al. LOF:identifying density-based local outliers[J]. ACM SIGMOD record, 2000, 29(2):93-104.
[6] Tang Jian, Chen Zhixiang, AW Fu, et al. Enhancing effectiveness of outlier detections for low density patterns[C]//Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin:Springer-Verlag, 2002:535-548.
[7] Huang Jin, Ling Charles X. Using AUC and accuracy in evaluating learning algorithms[J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(3):299-310.
[8] Zhang Ke, Hutter Marcus, Jin Huidong. A new local distance-based outlier detection approach for scattered real-world data[C]//Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin:Springer-Verlag, 2009:813-822.
[9] UCI. UCI Repository of Machine Learning Databases[EB/OL]. Irvine, CA:University of California(2007)
[2007] . http://www.ics.uci.edu/~mlearn/MLRepository.html.
[10] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755):788. |