[1] Breier J, Branišová J. A dynamic rule creation based anomaly detection method for identifying security breaches in log records[J]. Wireless Personal Communications, 2015, 94(3):1-15.
[2] Wang Z, Yang J, Zhang S Z, et al. Robust regression for anomaly detection[C]//IEEE International Conference on Communications.[S. l.]:IEEE, 2017:1-6.
[3] Callegari C, Giordano S, Pagano M, et al. Combining wavelet analysis and CUSUM algorithm for network anomaly detection[C]//IEEE International Conference on Communications.[S. l.]:IEEE, 2012:1091-1095.
[4] Nychis G, Sekar V, Andersen D G, et al. An empirical evaluation of entropy-based traffic anomaly detection[C]//Internet Measurement Conference.[S. l.]:ACM, 2008:151-156.
[5] Callegari C, Giordano S, Pagano M, et al. Entropy-based network anomaly detection[C]//International Conference on Computing, Networkingand Communications.[S. l.]:IEEE, 2017:334-340.
[6] Navaz A S S, Sangeetha V, Prabhadevi C, et al. Entropy based anomaly detection system to prevent DDoS attacks in cloud[J]. International Journal of Computer Applications, 2013, 62(15):42-47.
[7] Huo X, Lü C, Pei P, et al. Smart grid communication network traffic anomaly detection based on entropy analysis[C]//IEEE International Conference on Computer and Communications.[S. l.]:IEEE, 2017:1082-1086.
[8] Salem O, Naït-abdesselam F, Mehaoua A, et al. Anomaly detection in network traffic using Jensen-Shannon divergence[C]//IEEE International Conference on Communications.[S. l.]:IEEE, 2012:5200-5204.
[9] 范晓诗, 李成海. 加权条件熵在异常检测中的应用[J]. 计算机应用研究, 2014, 31(1):203-205. Fan Xiaoshi, Li Chenghai. Application of weighted conditional entropy in anomaly detection[J]. Application Research of Computers, 2014, 31(1):203-205.
[10] 李中魁. 基于动态阈值的网络流量异常检测方法研究与实现[D]. 成都:电子科技大学, 2010.
[11] Iordache M, Jouet S, Marnerides A K, et al. Distributed, multi-level network anomaly detection for datacentre networks[C]//2017 IEEE International Conference on Communications.[S. l.]:IEEE, 2017:1-6. |