[1] Almeida R, Pelegrini J, Waldman H. A generic-traffic optical buffer modeling for asynchronous optical switching networks[J]. IEEE Commun Lett, 2005, 9(2): 175-177. [2] Fayoumi A, Jayasumana A P. A surjective-mapping based model for optical shared-buffer cross-connect[J]. IEEE/ACM Trans Netw, 2007, 15(1): 226-233. [3] Tokushima M, Ushida J, Gomyo A. Pillar photonic crystal waveguides for integrated optical buffers// CLEO/Pacific Rim 2005. Tokyo: , 2005: 636-637. [4] Tucker R S, Ku P C, Chang-Hasnain C J. Slow-light optical buffers: capabilities and fundamental limitations[J]. J Lightwave Technol, 2005, 23(12): 4046-4066. [5] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys Rev Lett, 1987, 58(20): 2059-2062. [6] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys Rev Lett, 1987, 58(20): 2486-2489. [7] Joannopoulos J D, Meade R D, Winn J N. Photonic crystals: molding the flow of light[M]. Princeton: Princeton University Press, 1995. [8] Petrov A Y, Eich M. Zero dispersion at small group velocities in photonic crystal waveguides[J]. Appl Phys Lett, 2004, 85(21): 4866-4868. [9] Poon J K S, Scheuer J, Xu Yong, et al. Designing coupled-resonator optical waveguide delay lines[J]. J Opt Soc Am B, 2004, 21(9): 1665-1673. [10] Tanabe T, Notomi M, Kuramochi E, et al. Large pulse delay and small group velocity achieved using ultrahigh-Q photonic crystal nanocavities[J]. Opt Express, 2007, 15(12): 7826-7838. [11] Altuga H, Vuckovic J. Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays[J]. Appl Phys Lett, 2005, 86(11): 111102. [12] Moreolo M S, Morra V, Cincotti G. Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides[J]. J Opt A: Pure Appl Opt, 2008, 10(6): 064002. [13] Imhof A, Vos W L, Sprik R, et al. Large dispersive effects near the band edges of photonic crystals[J]. Phys Rev Lett, 1999, 83(15): 2942-2945. |