北京邮电大学学报

  • EI核心期刊

北京邮电大学学报

• •    

改进YOLOv8的生成式人脸检测算法

王新良,王明旭   

  1. 河南理工大学
  • 收稿日期:2024-05-14 修回日期:2024-07-02 发布日期:2024-11-22
  • 通讯作者: 王新良
  • 基金资助:
    河南省高等学校青年骨干教师培养计划;河南省高等学校重点科研基金项目

Improving Generative Face Detection Algorithm based on YOLOv8

Wang Xin-LiangMing-Xu WANG2   

  • Received:2024-05-14 Revised:2024-07-02 Published:2024-11-22
  • Contact: Wang Xin-Liang

摘要: 针对生成式人脸检测任务中存在误检现象和检测精度低的问题,本文提出了RFCE -YOLOv8生成式人脸检测算法。首先,在主干网络中引入RCS-OSA (RCS-Based One-Shot Aggregation)模块替换原网络中的C2f模块,利用RCS模块重复堆叠的特点,保证了特征的复用,同时加强了相邻层特征之间不同通道的信息流动,增强了模型的特征提取能力;其次,引入焦点调制 (Focal Modulation) 模块,采用焦点调制机制聚焦图像关键区域,增强长距离依赖和上下文信息的捕捉能力,提升目标的检测精度;然后,引入CBAM卷积注意力机制(Convolutional Block Attention Module),从通道和空间两个维度捕捉人脸的细节特征,使得模型能够自适应地关注输入特征中的关键通道和空间位置,提高模型的性能;最后,优化边框回归损失函数,将CIoU替换为Focal-EIoU,动态调整样本权重,使模型更专注于高质量样本,降低低质量样本的干扰,提高模型的回归精度。实验结果表明,改进后的算法mAP达到了93.87%,相较于基线算法提升了2.28%,能够有效地改善生成式人脸检测任务中的误检现象,提高目标的检测精度。

关键词: 生成式人脸检测, YOLOv8, 特征融合, 特征提取, 注意力机制, 损失函数优化

Abstract: Addressing the issues of false positives and low detection accuracy in generative face detection tasks, this paper proposes the RFCE-YOLOv8 generative face detection algorithm. Firstly, the RCS-OSA (RCS-Based One-Shot Aggregation) module is introduced into the backbone network to replace the original C2f module. Leveraging the repetitive stacking characteristics of the RCS module ensures feature reuse and enhances the flow of information between adjacent layer features, thereby strengthening the model's feature extraction capability. Secondly, the Focal Modulation module is introduced, employing a focal modulation mechanism to focus on key areas of the image, enhancing the capture ability of long-distance dependencies and contextual information, thereby improving the detection accuracy of targets. Next, the CBAM (Convolutional Block Attention Module) attention mechanism is introduced to capture facial detail features from both channel and spatial dimensions, enabling the model to adaptively focus on key channels and spatial positions in the input features, thereby improving the model's performance. Finally, the bounding box regression loss function is optimized, replacing CIoU with Focal-EIoU, dynamically adjusting sample weights to focus the model more on high-quality samples, reduce interference from low-quality samples, and improve the regression accuracy of the model. Experimental results demonstrate that the improved algorithm achieves an mAP of 93.87%, a 2.28% improvement over the baseline algorithm, effectively addressing false positives and improving detection accuracy in generative face detection tasks.

Key words: generative face detection, YOLOv8, feature enhancement, feature extraction, attention mechanism, loss function optimization

中图分类号: