北京邮电大学学报

  • EI核心期刊

北京邮电大学学报

• •    

地震救援及灾后重建场景下空天地一体化网络的任务分配方案

朱思峰1,夏寒1,朱海2,张宗辉1,乔蕊2   

  1. 1. 天津城建大学
    2. 周口师范学院
  • 收稿日期:2024-04-20 修回日期:2024-05-30 发布日期:2024-11-22
  • 通讯作者: 张宗辉
  • 基金资助:
    国家自然科学基金项目;天津市自然科学基金重点项目;河南省高校科技创新人才支持计划项目;河南省科技攻关计划项目

Task Allocation Scheme for Space-Air-Ground Integrated Network in Earthquake Rescue and Post-Disaster Reconstruction Scenarios

  • Received:2024-04-20 Revised:2024-05-30 Published:2024-11-22

摘要: 地震救援及灾后重建场景中,空天地一体化网络中会涌现大量需要实时处理的任务,利用任务卸载决策技术来提升任务处理速度是非常有意义的。为解决地震救援及灾后重建场景中多用户、多服务器的任务卸载决策问题,本文设计了系统模型、通信模型、计算模型、和任务卸载模型,给出了一种基于深度强化学习的任务卸载决策方案。实验结果表明,该方案能够降低地震救援及灾后重建场景中的任务卸载时延和系统能耗,具有良好的应用前景。

关键词: 地震救援及灾后重建, 空天地一体化网络, 卸载决策, 深度强化学习

Abstract: In earthquake rescue and post-disaster reconstruction scenarios, a plethora of real-time tasks emerge within integrated air-ground-space networks. Leveraging task offloading decision-making techniques to enhance task processing speed is highly meaningful. To address the task offloading decision-making problem in scenarios involving multiple users and multiple servers, this paper designs a system model, communication model, computing model, and task offloading model, proposing a task offloading decision-making scheme based on deep reinforcement learning. Experimental results demonstrate that this scheme can reduce task offloading latency and system energy consumption in earthquake rescue and post-disaster reconstruction scenarios, thus exhibiting promising prospects for practical applications.

Key words: Earthquake Rescue and Post-Disaster Reconstruction, Space-Air-Ground Integrated Network, Offloading Decision-making, Deep Reinforce Learning Algorithm

中图分类号: