北京邮电大学学报

  • EI核心期刊

北京邮电大学学报

• •    

融合实体名称信息的邻域匹配实体对齐网络

祁雨婷1,邵玉斌2,杜庆治2,龙华2   

  1. 1. 昆明理工大学信息工程与自动化学院
    2. 昆明理工大学
  • 收稿日期:2024-03-25 修回日期:2024-05-11 发布日期:2024-11-22
  • 通讯作者: 邵玉斌
  • 基金资助:
    云南省媒体融合重点实验室项目

Fusing Entity Name Information and Neighborhood Matching in Entity Alignment Network

Yu-Ting QI,yubin yubinshao, ,   

  • Received:2024-03-25 Revised:2024-05-11 Published:2024-11-22
  • Contact: yubin yubinshao

摘要: 针对实体对齐任务中跨语言知识图谱间的结构异构性,提出一种融合实体名称信息的邻域匹配实体对齐网络。首先,使用实体的具体邻接度数信息构建加权邻接度数矩阵,用于Highway-GCNs得到实体嵌入并计算出实体对间距离;其次,基于图结构信息计算实体对邻域间的匹配分数,用于迭代更新实体对间距离;之后,计算翻译成同语言的实体对名称间的Jaccard距离来更新实体对间距离;最后,使用更新后的实体对间距离进行对齐评估。在公共数据集DBP15k上进行实验,所提模型在三个跨语言数据集的Hit@1指标分别为85.6%,88.9%和95.2%,优于所有基于glove词向量模型的基线模型,表明所提模型能有效提高实体对齐结果的准确性。

关键词: 知识图谱, 实体对齐, 图卷积网络, 邻域匹配, 实体名称

Abstract: To address the structural heterogeneity among cross-lingual knowledge graphs in entity alignment tasks, a fusing entity name information and neighborhood matching in entity alignment network is proposed. Firstly, a weighted adjacency degree matrix is constructed based on the specific adjacency degree information of entities, which is utilized in Highway-GCNs to obtain entity embeddings and compute distances between entity pairs. Secondly, the matching scores between the neighborhoods of entity pairs are calculated based on graph structural information, which are used to iteratively update the distances between entity pairs. Subsequently, the Jaccard distance between same-language entity pair names is computed to update the distances between entity pairs. Finally, the updated distances between entity pairs are used for alignment evaluation. Experiments conducted on the public dataset DBP15k, the proposed model achieves Hit@1 scores of 85.6%, 88.9% and 95.2% on three cross-lingual datasets respectively, surpassing all baseline models based on glove word vector models. This indicates that the proposed model effectively improves the accuracy of entity alignment results.

Key words: knowledge graph, entity alignment, graph convolutional network, neighborhood matching, entity name

中图分类号: