北京邮电大学学报

  • EI核心期刊

北京邮电大学学报

• •    

基于三分支架构的混凝土桥梁表观多病害语义分割网络

廖延娜,黄超阳,李桂珍,阴亚芳   

  1. 西安邮电大学
  • 收稿日期:2024-01-11 修回日期:2024-03-15 发布日期:2024-07-18
  • 通讯作者: 黄超阳
  • 基金资助:
    陕西省重点研发计划—国际科技合作计划项目;西安市科技计划项目合同书—西安市创新能力强基计划;西安邮电大学研究生创新基金重点项目

Concrete Bridge Surface Multi-Defect Semantic Segmentation Network based on Three-Branch Architecture

  • Received:2024-01-11 Revised:2024-03-15 Published:2024-07-18

摘要: 针对混凝土桥梁表观多病害之间的干扰等局限性导致网络深层上下文信息挖掘不充分的问题,提出了基于三分支架构的混凝土桥梁表观多病害语义分割网络(Concrete Bridge Surface Multi-Defect Semantic Segmentation Network based on Three-Branch Architecture,TBNet)。TBNet包含三分支编码器、跳跃连接和解码器。三分支编码器对特征信息进行了解耦,由逐级递进式的上下文分支以及“宽而大”的细节分支和“窄而小”的语义分支组成,每个分支分别负责提取上下文、细节和语义信息,引导聚合模块(Guidance Aggregation Module ,GAM)通过语义和细节信息指导上下文信息进行融合,增强网络深层的上下文信息挖掘能力。同时,Biformer注意力机制模块可以降低编码器输出特征信息的冗余,进一步提高分割效果。实验结果表明,TBNet在混凝土桥梁表观多病害语义分割数据集上相比于基准网络UNet平均像素精度(mPA)提升了5.92%,平均交并比(mIoU)提升了6.65%,另外在公开数据集GAPs384交并比(Iou)比基准网络UNet提升了3.46%。

关键词: 桥梁病害分割, 三分支编码器, 特征信息解耦, 上下文信息

Abstract: Due to limitations such as interference among various apparent diseases in concrete bridges, there is a problem of insufficient exploration of deep contextual information in the network, this paper proposes a Concrete Bridge Surface Multi-Defect Semantic Segmentation Network based on Three-Branch Architecture (TBNet). TBNet comprises three-branch encoder, skip connection and decoder. The three-branch encoder decouples feature information, consisting of progressively hierarchical context branch, "wide and large" detail branche, and "narrow and small" semantic branche. Each branch is responsible for extracting contextual information, detailed information, and semantic information, respectively. The Guidance Aggregation Module (GAM) guides the fusion of contextual information through semantic and detailed information, enhancing the deep contextual information mining capability of the network. Simultaneously, the Biformer attention mechanism module reduces redundancy in the encoder's output feature information, further improving segmentation performance. Experimental results demonstrate that TBNet outperforms the baseline UNet on the concrete bridge surface multi-defect semantic segmentation dataset, with an average pixel accuracy (mPA) improvement of 5.92% and an average intersection over union (mIoU) improvement of 6.65%. Additionally, on the public dataset GAPs384, the intersection over union (IoU) of TBNet is 3.46% higher than that of the baseline UNet.

Key words: Bridge Disease Segmentation, Three-Branch Encoder, Feature Information Decoupling, Context Information

中图分类号: